Ephemerides from PRIDE - JUICE Status Update and Plans

D. Dirkx, PRIDE-JUICE team meeting, JIVE, October 29, 2018

Challenge the future 1

Ephemerides - Science Case

- Jovian system ephemerides are key in
 - Determining dissipation in lo and Jupiter (Lainey et al., 2009)
 - Determining the Jupiter mass
 - Possibly sensitivity to other geodetic parameters
 - Robustly planning satellite tour missions
- Dissipation in Jupiter and satellites
 - Effect on moon position is quadratic in time -> long data sets are valuable
 - Estimates of k_2/Q for both lo and Jupiter from astrometry (1873-2008)
 - Constrains the bulk tidal heat dissipation
 - Key in studies of evolution of Galilean moons
- Key question: which parameters could be observe using JUICE-based ephemerides?
 - Key objective: dissipation parameters

Delft

Ephemerides - Science Case

- Dissipation in giant planets
 - Driving force in evolution of satellite system -> key in origin and evolution
 - Highly non-linear function of forcing frequency -> dynamical tide
 - Mismodelled in past evolution studies
- Estimated k_2/Q of Saturn at different forcing frequencies (Lainey et al., 2017)
 - Shows possible impact of dynamical tide
- Possible formation of "resonance locks" (Fuller et al., 2015)
 - Possible scenario: extremely high dissipation in Jupiter at Callisto's frequency

Auclair-Desrotour, et al. (2014)

Challenge the future 3

TUDelft

Ephemerides - Science Case

- Dissipation in giant planets
 - Driving force in evolution of satellite system -> key in origin and evolution
 - Highly non-linear function of forcing frequency -> dynamical tide
 - Mismodelled in past evolution studies
- Orbital evolution of Titan:
 - Extremely high Saturn Q=100 at Titan's forcing frequency
 - **Independently** determined by radio science (Cassini; *Tortora et al.*) and astrometry (Eart-based + Cassini; *Lainet et al.*)

Ephemerides - Observable Parameters

- Analysis of sensitivity of Galilean moon dynamics to Jovian system parameters (*Dirkx et al., 2016*)
 - Some sensitivity to Io/Jupiter dissipation (Io forcing frequency)
 - Sensitivity to tides on/by Europa weak

5

Ephemerides - Observable Parameters

- Analysis of sensitivity of Galilean moon dynamics to Jovian system parameters (*Dirkx et al., 2016*)
 - Significant sensitivity to Jovian gravity field. But: constraints from Juno (much) stronger
 - Other parameters (almost) fully absorbed into moon initial states
 - Possible exception: Moon k₂ values
 - Possible exception: Moon libration amplitudes

Ephemerides - Data

- PRIDE tracking data provides:
 - VLBI data (right ascension/declination in ICRF)
 - Open-loop Doppler data (range rate w.r.t. ground station)
- Information content of open-loop data largely equivalent to closed-loop
 - PRIDE-Doppler and 3GM-Doppler of comparable quality
- The VLBI observable
 - Provides position perpendicular to ecliptic
 - Provides absolute position -> well suited to long periodic signals: ephemerides

Ephemerides - Data

- Typically ephemerides are generated from
 - Astrometric data (Earth- and spacecraft-based)
 - Range and VLBI data to orbiters
 - Doppler, VLBI and range data during flybys
 - Earth-based radar data
- JUICE generates many different data for ephemerides:
 - Range, Doppler and VLBI during Ganymede, Europa and Callisto flybys
 - Range, VLBI (and Doppler) during Ganymede orbit phase
 - Optical astrometry of lo and Europa (?)
- To be combined with
 - Earth-based astrometry (back to 1873), reanalyzed with Gaia catalogue

- Analysis of contribution of VLBI data (*Dirkx et al., 2017*)
 - Simulate JUICE tracking data with/without VLBI data
- Vary observation parameters:
 - Spacecraft position uncertainty
 - VLBI data quality

	Relative initial position formal errors [%]									
	Ganymede		Io		Europa		Callisto			
Measurement case	IP	OP	IP	OP	IP	OP	IP	OP		
JUICE Position Error Case 1, $\sigma_h=0.1$ nrad	-10.1	-80	_	-	-51.3	-66.8	-63.2	-95.9		
$\sigma_h = 0.5 \text{ nrad}$	-	-39.7	-			-18.2	-60	-85.2		
$\sigma_h = 1.0 \text{ nrad}$	-	-18.3	-			-9.24	-57.9	-73.9		
JUICE Position Error Case 4 $\sigma_h = 0.1$ nrad	-9.04	-81.2	-7.72	—	-54.6	-79.1	-66.6	-97.3		
$\sigma_h = 0.5 \text{ nrad}$		-43.1	—		-14.1	-32.1	-60.7	-91.6		
$\sigma_h = 1.0 \text{ nrad}$	-	-21.3	-	-		-15.4	-59.7	-84.7		
JUICE Position Error Case 5, $\sigma_h = 0.1$ nrad	-18	-95.1	-	-	-61.1	-85.9	-70.9	-98.2		
$\sigma_h = 0.5 \text{ nrad}$	-	-83.4	-		-16.8	-50.3	-63	-95.9		
$\sigma_h = 1.0 \text{ nrad}$		-69.2		<u> </u>	-5.95	-26	-61.2	-93.2		

- Primary contribution:
 - Ganymede/Callisto out-of-plance components
- Jupiter ephemeris out-of-plane also strongly constrained

	Relative initial position formal errors [%]									
	Ganymede		Io		Europa		Callisto			
Measurement case	IP	OP	IP	OP	IP	OP	IP	OP		
JUICE Position Error Case 1, $\sigma_h=0.1$ nrad	-10.1	-80	_	-	-51.3	-66.8	-63.2	-95.9		
$\sigma_h{=}0.5$ nrad	-	-39.7				-18.2	-60	-85.2		
$\sigma_h = 1.0 \text{ nrad}$	-	-18.3	—	-	3 -3	-9.24	-57.9	-73.9		
JUICE Position Error Case 4 $\sigma_h=0.1$ nrad	-9.04	-81.2	-7.72	—	-54.6	-79.1	-66.6	-97.3		
$\sigma_h = 0.5 \text{ nrad}$		-43.1	-		-14.1	-32.1	-60.7	-91.6		
$\sigma_h = 1.0 \text{ nrad}$	-	-21.3	—	<u> </u>		-15.4	-59.7	-84.7		
JUICE Position Error Case 5, $\sigma_h=0.1$ nrad	-18	-95.1	-		-61.1	-85.9	-70.9	-98.2		
$\sigma_h{=}0.5$ nrad	-	-83.4	-		-16.8	-50.3	-63	-95.9		
$\sigma_h = 1.0 \text{ nrad}$	_	-69.2			-5.95	-26	-61.2	-93.2		

Ephemerides - PRIDE contribution

- Ephemeris generation will be particularly complex for JUICE
 - Combination of flyby, orbiter and astrometric data: how best to merge?
 - Europa observations only in a very short period -> weak constraints
 - Large concentration of data at Ganymede
- Laplace resonance
 - Io, Europa, Ganymede ephemerides strongly linked
 - Ephemeris quality for Ganymede degrades due to scarcity of lo/Europa data

Challenge the future 11

- Next steps for simulation study
 - Combine JUICE data (simulated) with existing data (astrometric)
 - Merge data sets at normal equation level
 - Incorporate 'synthetic' Earth-based astrometry 2018-2030
- Investigate:
 - Synergy between data sets
 - Evolution of satellite state uncertainty
 - Possible determination of Jupiter's dissipation at multiple frequencies
- Separate analyses close to done
 - Merge of data sets to be done in early 2019

- Upcoming step for simulation study:
 - Combined determination of JUICE orbit and moon ephemeris
 - Allows information content of data to be robustly analyzed
- Possible issues:
 - Significant correlations (flybys): coupled variational equations needed!
 - Computational resources

Ephemerides - Challenges for JUICE

- Ephemeris quality for Ganymede degrades due to scarcity of Io/Europa data
- Poor conditioning of normal equations
 - Strong *a posteriori* correlations
 - Increase in (formal) estimation errors
- Mitigation options
 - Optical astrometry (JANUS) of Io (and Europa) crucial
 - Synergy with Europa Clipper likely to be substantial

- Efficient data analysis pipelines will be needed for PRIDE
 - Data volume (much) higher than for past PRIDE experiments
 - Orbit determination and ephemeris creation should be "automated"
 - Integration with 3GM radio-science data
- Orbit determination tool: Tudat
 - Fully open-source
 - Developed at TU Delft
 - Use for wide range of interplanetary tracking simulation studies
 - Used LRO orbit determination from one-way laser ranging data

- Orbit determination tool: Tudat
- Steps required for PRIDE operations
 - Implement detailed models for real radio data analysis (data corrections, high-accuracy reference frames, data corrections, *etc.*)
 - Use existing data archives as test cases
 - Cross-validate with other software (GINS, MONTE, GEODYN,)
 - **Requires dedicated personnel** (Ph.D./postdoc)

- Tudat software
 - Currently used for simulations of PRIDE-JUICE for ephemerides
 - Next step: combined solution for JUICE orbit and moon ephemerides
- Goal: automated setup to rerun analysis when new Crema is released
- Goal: provide a flexible interface (JSON file) through which mission/data settings can be varied, and simulations rerun
 - Data cadence/quality
 - Mission properties
 - System parameters
 - Estimated parameters
 -

- ExoMars-LaRa as test case for JUICE
 - Mission scenario very different
 - Data analysis pipelines very similar
- LaRa data
 - To be used to constrain Mars fluid core size through measurements of rotational variations
 - Very low data cadence (1 hour per week) means PRIDE Doppler data may be very valuable
 - VLBI data will not impact experiment, but will be valuable input to Mars ephemeris

