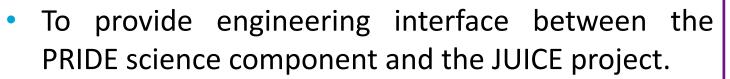
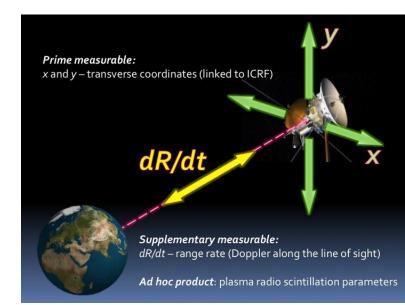

PRIDE – JUICE Interface Scenario


Vidhya Pallichadath TU Delft and JIVE

JIVE, Dwingeloo 29-OCT-2018

Objectives

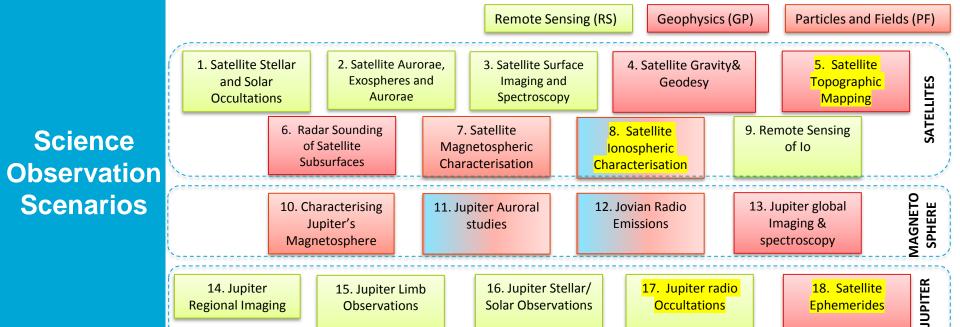

- To brief the current opportunities/scenarios available for the PRIDE.
- To exploit synergies with other JUICE instruments.
- To discuss on potential imminent plans for PRIDE-JUICE development.

- <u>Transverse positioning (in ICRF) –</u> <u>main deliverable</u>
 - S/C differential lateral position with the accuracy of 100-10 uas (1σ) over integration time 60-1000 s → ephemerides of Jovian system.
- Range rate Doppler *ad hoc*
 - <u>Supplementary</u> multi-static Doppler rangerate measurements with an accuracy of no worse than 0.015 mm/s (1σ) at 60 s integration time.
- Radio Occultations
 - <u>Supplementary</u> multi-static measurements of occultation radio signal for characterisation of the ionosphere and neutral atmosphere.
 - Qualitative characterisation of the occulting limb roughness.
- Other ad-hoc opportunities
 - IPS plasma diagnostics
 - Synergy with DtE science data delivery via "smart telecom"

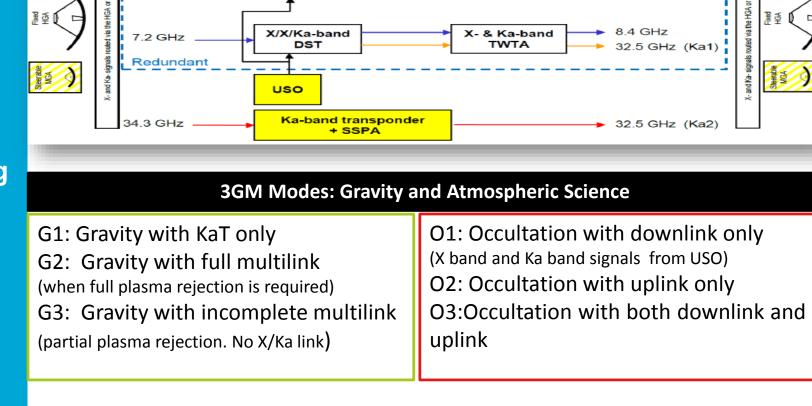
PRIDE Measurables

	Obser	Respo	nsibility	Comments	
Investigation	3GM	PRIDE	3GM	PRIDE	
Moons gravity field	V _R , R				
Ganymede shape		L			Joint with GALA.
Ephemerides of the moons	V _R , R	L			
Ephemerides in the Solar	V _R , R	L			
System					
Radio-occ atmospheres	Bending	Bending angle,			PRIDE support for deep atmospheric
	angle, phase	phase			occultations at Jupiter.
Radio-occ ionospheres/	Bending	Bending angle,			
exospheres	angle, phase	phase			
Radio occ surfaces	-	Diffraction			Surface roughness, dielectric constant etc.
		pattern			
Bi-static radar	Reflected	Reflected			Uplink bistatic, dual polarisation.
	signal	signal			
Rings science	Phase,				Feasibility tbd
	diffraction				
Jovian plasma, Io torus	Phase	Phase	tbd	tbd	Feasibility tbd

Responsibilities of the 3GM and PRIDE experiments. Red and blue shading means leading and complementary roles respectively.


JUICE Top Level Science Requirements Matrix

Goals		Science objectives	Measurements
Exploration of the habitable	Characterise Ganymede as a	Characterise the extent of the ocean and its relation to the deeper interior	Moons gravity field
zone:	planetary object and possible habitat	Characterise the ice shell	Moons gravity field and shape
Ganymede, Europa, and Callisto		Determine global composition, distribution and evolution of surface materials	
Callisto		Understand the formation of surface features and search for past and present activity	
		Characterise the local environment and its interaction with the jovian magnetosphere	Radio-occultation in the moons atmospheres an ionospheres
	Explore Europa's recently active zones	Determine the composition of the non-ice material, especially as related to habitability	
		Look for liquid water under the most active sites	
		Study the recently active processes	
	Study Callisto as a remnant of the early jovian system	Characterise the outer shells, including the ocean	Moons gravity field and shape
		Determine the composition of the non-ice material	Bi-static radar
		Study the past activity	
Explore the Jupiter system	Characterise the Jovian atmosphere	Characterise the atmospheric dynamics and circulation	
as an archetype		Characterise the atmospheric composition and chemistry	
for gas giants		Characterise the atmospheric vertical structure	Radio occultation in the Jovian atmosphere an ionosphere
	Explore the Jovian magnetosphere	Characterise the magnetosphere as a fast magnetic rotator	
		Characterise the magnetosphere as a giant accelerator	
		Understand the moons as sources and sinks of magnetospheric plasma	Radio-occultation in the moons atmospheres an ionospheres
	Study the Jovian satellite and ring	Study Io's activity and surface composition	
	systems	Study the main characteristics of rings and small satellites	Ephemerides of the moons and in the Solar system (?), ring science.



Science objectives covered by 3GM and PRIDE experiments are highlighted in green

X/X/Ka-band

DST

7.2 GHz

₩¥

8.4 GHz

32.5 GHz (Ka1)

the MG²

1GA

X- & Ka-band

TWTA

Phase	Date	Duration (days)	USO running	Phase
1	2029-06-01	359	Never	1
2	2030-05-26	120	15 days, 18:51:12	2
3	2030-09-23	37	28 days, 12:11:31	3
4	2030-10-30	276	5 days, 4:51:22	4
5	2031-08-02	488	463 days, 17:14:25	5
6	2032-12-02	151	127 days, 3:51:47	6
7	2033-05-02	152	Never	7
End	2033-10-01			End
Total		1583	640 days, 9:00:17	Total

USO must be activate 1 month before occultation (30 days (before occ) until the end of occ)

USO

			Main Segments in Phase 2										
			Energy redu	ction									
WG1 Main Segments/ Opportuniti es			• 3 Ganymede flybys (C/A 401 km, 502 km, 3807 km) • 1 Callisto flyby (C/A 791 km) "The priority in phase 2 will be the 'characterisation of Gan possible habitat' and Callisto as a remnant of th				- 5 Ganyme						
WG	Phase	Subphase	Start time	Stop time	Duration (min)	Cases	Ops mode	Priority	Comments				
					Fly	bys							
					2G2 fly	/by (401	km, c/a 2030-1	51T09:15:	01)				
1	1	2.2	-8h from 2G2 CA	+8h from CA	960	4, 18	DLA	High	3GM MGA observations. Gravity field				
					3G3 fly	by (3807	km, c/a 2030-2	208T14:21:	:03)				
1	1	2.2	-8h from 3G3 CA	+8h from CA	960	4, 18	DLA	High	3GM MGA observations: gravity field				
				4G4 flyby (502 km, c/a 2030-244T08:41:30)									
1	1	2.2	-8h from 4G4 CA	+8h from CA	960	4, 18	DLA	High	3GM MGA observations: gravity field				
						5C	1 flyby (791 km	ı)					
1	1	2.2	-8h from 5C1 CA	+8h from CA	960	4, 18	DLA	High	3GM MGA observations. Gravity field and tides				
ŤU Delft													

			Main Segments in Phase 3									
	WG1 Main Segments		Europa Phase									
			•2 Europa flyb									
Seyments			"The priority in phases 3 and 4 will be to 'Explore Europa's recently active zones' and to study									
			Callisto as a remnant of the early Jovian system"									
WG	Phase	Subphase	Start time	Stop time	Duration (min)	Cases	Ops mode	Priority	Comments			
					Flyby							
							a 05-OCT-2030	_10:57:17				
1	3	3.2	-8h from CA	+8h from CA	960	4, 18	DLA	High	3GM MGA observations: gravity field			
					7E2 flyby (403	3 km, c/a	a 19-OCT-2030	_16:48:04)			
1	3	3.4	-8h from 2G2 CA	+8h from CA	960	4, 18	DLA	High	3GM MGA observations: gravity field			
0	5	1.6.										
	UD	elft							10			

Main Segments in Phase 4

High latitudes phase

WG1 Main Segments

•9 Callisto flybys (C/A: 7x 199 km, 409 km, 2008 km) 8C2, 9C3, 10C4, 11C5, 12C6, 13C7, 14C8, 15C9 and 16C10

"The priority in phases 3 and 4 will be to 'Explore Europa's recently active zones' and to study Callisto as a remnant of the early Jovian system"

WG	Phase	Subphase	Start time	Stop time	Duration (min)	Cases	Ops mode	Priority	Comments		
	۱		1		Flybys			I			
					8C2 fly	by (409	km, c/a 31-00	CT-2030_0	8:26:01)		
1	4	4.2	-8h from CA	+8h from	960	4, 18	NLA	High	3GM MGA observations: gravity field and tides		
	!				9C3 fly	[,] by (199	km, c/a 14-DE	C-2030_1	3:18:30)		
1	4	4.10	-8h from CA	+8h from	960	4, 18	NLA		3GM MGA observations: gravity field and tides		
					10C4 fl	yby (199) km, c/a 31-DI	EC-2030_0	5:50:30)		
1	4	4.14	-8h from CA	+8h from	960	4, 18	NLA		3GM MGA observations: gravity field and tides		
					11C5 fl	yby (199) km, c/a 16-JA	\ <u>N-2031_</u> 2.	2:16:13)		
1	4	4.18	-8h from CA	+8h from	960	4, 18	NLA	High	3GM MGA observations: gravity field and tides		
	<u></u>				12C6 fly	/by (200	8 km, c/a 02-F	EB-2031_1	4:45:35)		
1	4	4.22	-8h from CA	+8h from	960	4, 18		High	3GM MGA observations: gravity field and tides		
	·				13C7 fly	yby (199	km, c/a 27-A	PR-2031_0	1:05:28)		
1	4	4.32	-8h from CA	+8h from	960	4, 18	NLA	High	3GM MGA observations: gravity field and tides		
					14C8 fly	vby (199	km, c/a 13-M	AY-2031_1	7:23:59)		
1	4	4.36	-8h from CA	+8h from	960	4, 18	DLA	High	3GM MGA observations: gravity field and tides		
				15C9 flyby (199 km, c/a 30-MAY-2031_09:52:51)							
1	4	4.40	-8h from CA	+8h from	960	4, 18	DLA	High	3GM MGA observations: gravity field and tides		
			·		16C10 f	lyby (19	9 km, c/a 16-Jl	UN-2031_0	12:22:05)		
1	4	4.44	-8h from CA	+8h from	960	4, 18	DLA	High	3GM MGA observations: gravity field and tides		

			Main Segments in Phase 5									
			Low energ									
		Main ents	11 Satellite Flybys - 8 Ganymede and 3 Callisto 17G5, 18G6, 22G7, 23G8, 24G9, 25G10, 26G11, 19C11, 20C12, 21C13									
			"The pr						nede as a planetary object and early Jovian system"			
WG	Phase	Subphase	Start time	Stop time	Duration (min)	Cases	Ops mode	Priority	Comments			
			I		Flybys	1						
			17G5 flyby (807 km, c/a 26-AUG-2031_19:16:36)									
1	5	5.7	-8h from CA	+8h from	960	4, 18		High	3GM MGA observations: gravity field and tides			
					186G fl	yby (385	5 km, c/a 10-S	EP-2031_0	2:05:45)			
1	5	5.10	-8h from CA	+8h from	960	4, 18		High	3GM MGA observations: gravity field and tides			
							7 km, c/a 26-SI	EP-2031_2				
1	5	5.14	-8h from CA	+8h from	960	4, 18		High	3GM MGA observations: gravity field and tides			
							9 km, c/a 13-0					
1	5	5.18	-8h from CA	+8h from	960	4, 18		High	3GM MGA observations: gravity field and tides			
-	5	5.20	-8h from CA	+8h from	21C13 f 960		/ km, c/a 11-JA					
1	5	5.20	-8h from CA	+8n from		4, 18	2 km c/a 02-E	High	3GM MGA observations: gravity field and tides			
1	5	5.22	22G7 flyby (27782 km, c/a 02-FEB-2032_23:21:30) -8h from CA +8h from 960 4, 18 High 3GM MGA observations: gravity field and tides									
-		5.22	23G8 flyby (27409 km, c/a 07-APR-2032_09:48:15)									
1	5	5.23	-8h from CA	+8h from	960	4, 18		High	3GM MGA observations: gravity field and tides			
			24G9 flyby (19262 km, c/a 13-MAY-2032_08:58:03)									
1	5	5.14	-8h from CA +8h from 960 4, 18 High 3GM MGA observations: gravity field and tides									
					25G10 fly	yby (3323	35 km, c/a 04-	IUN-2032_				
1	5	5.14	-8h from CA	+8h from	960	4, 18		High	3GM MGA observations: gravity field and tides			
							25 km, c/a 24-	_				
1	5	5.14	-8h from CA	+8h from	960	4, 18	DLA	High	3GM MGA observations: gravity field and tides			
)3 km, c/a 22-/					
1	5	5.14	-8h from CA	+8h from	960	4, 18	DLA	High	3GM MGA observations: gravity field and tides			

Main Opportunities for WG2

- 1. Flybys of Europa, Ganymede, and Callisto down to a distance of about 1500 km
- 2. Distant flybys of Europa, Ganymede, and Callisto for exospheric studies and astrometric observations
- 3. Distant observations and monitoring of Io
- 4. Characterisation and astrometric observations of the inner satellites at distances below 1,000,000 km
- 5. Characterisation and astrometric observations of the irregular satellites at distances below 10,000,000 km
- 6. GCO5000
- 7. Occultation Opportunities (Ionospheric Characterisation)

Main segments in Phase 2

•Three flybys of Ganymede & One flyby Callisto

•Science objectives related to Io, the small satellites and the ring system

- •5 opportunities to observe Io, 3 of which at distance closer than 450,000 km.
- Favourable opportunities to observe some of the largest among the small inner satellites of Jupiter (Thebe and Amalthea), and some of the outer irregular satellites (Themisto, Himalia, Leda, Elara, 55066)

•Explore the Jupiter system as archetype of gas giants

•No occultation opportunities (i.e., the Earth being occulted to the S/C by Ganymede or Callisto)

WG2 Main

Segments

(future evolution of the trajectory may provide occultation opportunities)

Main Segments in Phase 3

Phase 3 ("Europa phase") time range: 2030-09-28T02:17 to 2030-10-26T20:31

- Two close Europa flybys and distant observations of Io (1) and minor satellites.
- No occultation opportunities (i.e., the Earth being occulted to the S/C by Europa)

Main Segments in Phase 4

Phase 4 (" moderate inclination phase") time range: 2030-10-26T20:31 to 2031-06-25T20:56

- Nine flybys of Callisto: 3 dayside low altitude, 1 dayside high altitude and 5 nightside low altitude
- Distant observations of Europa(4), Ganymede(5), Io (4)and other minor satellites
 - 3GM Occultation's : 3 out of 9 Callisto flybys (8C2, 9C3 and 11C5), provide occultation opportunities
 - 8C2 occurring on 31 October 2030 provides the longest occultation arc (~17 minutes, covering the C/A period and part of the egress phase)
 - 9C3 and 11C5 provide shorter occultation's (10 and 5 minutes respectively, both in the egress phase)

WG2 Main Segments

ŤUDelft

Main Segments in Phase 5

Phase 5 time range (low energy phase or Transfer to Ganymede): 2031-06-25T20:56 to 2032-08-24T12:56

It features several opportunities relevant to WG2, most notably:

- 8 flybys of Ganymede: 1 nightside low altitude and 1 nightside high altitude. All other opportunities are distant encounters in the altitude range ~19,000-33,000 km, where most of the nightside is seen
- Three flybys of Callisto: 2 low altitude (one nightside and one dayside) and 1 nightside high altitude
- Distant observations of Io, Europa, and minor satellites
- The longest opportunities to observe Jupiter's ring system at high phase angle and low elevation
- 3GM Occultation's : Ganymede flybys (17G5 & 18G6), as well as Callisto flybys (19C11 & 20C12), provide occultation opportunities
 - Ganymede flyby 17G5 --> 20 min, around C/A
 - Ganymede flyby 18G6 --> 22 min, around C/A
 - Callisto flyby 19C11 --> 34 min, inbound phase
 - Callisto flyby 20C12 --> 93 min, inbound phase

WG2 Main Segments

The prime segment request for WG4 can be summarized as:

- 1. Perijove segments
- 2. Phase angle segments
- 3. Inclined segments
- 4. Monitoring segments
- 5. Synergistic science segments
- 6. Event-driven segments (e.g., radio/solar/stellar occultation's, impacts, storms)

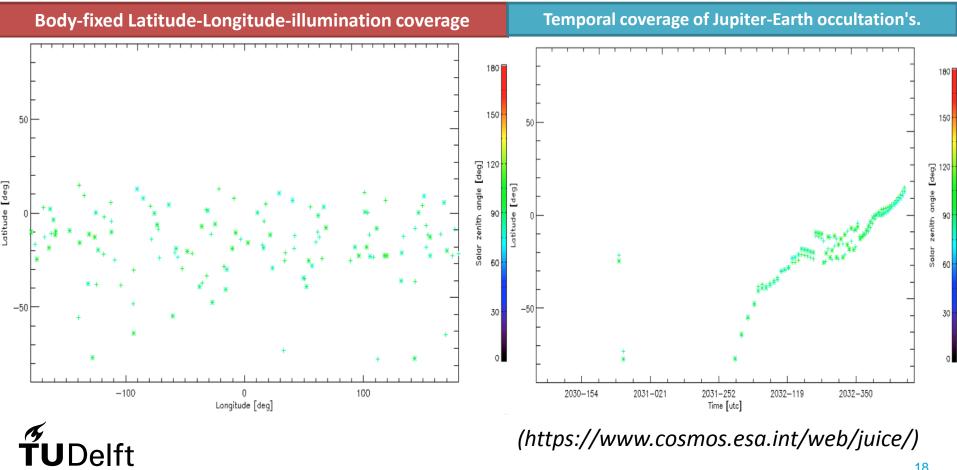
Phases

Phase 2 : Three flybys of Ganymede and one flyby Callisto & *4 Jupiter perijoves*Phase 3 : *2 equatorial dayside perijoves* (rather like Phase 2), they provide the highest spatial resolution for Jupiter observations of the entire mission
Phase 4 : High latitude phase of the mission , 9 Callisto flybys (from 8C2 to 16C10), and *13 Jupiter perijoves*

Phase 5 : Transfer of the spacecraft to Ganymede following two subphases - *the Ganymede - Callisto ladder, and the low energy endgame*. It will last for 433 days, and consists of *31 perijove opportunities*. This phase has generally higher phase angles at closer proximity to Jupiter

WG4

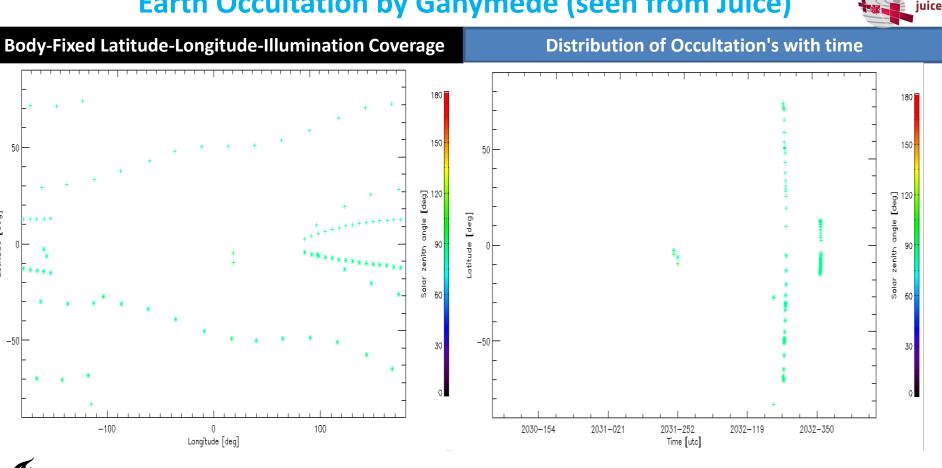
WG4: 3GM Occultation's Opportunities


3GM radio occultation's are used to probe the electron content of the upper atmosphere and the composition/structure of the neutral atmosphere

- Phase 2: No 3GM occultations
 Phase 3: Immediately following Europa flybys, two 3GM occultations on
 - October 7th 2030 and
 - October 24th 2030
- Phase 4: No 3GM occultations
- Phase 5: 21 3GM occultations before GOI

3GM Occultations during Phase 5

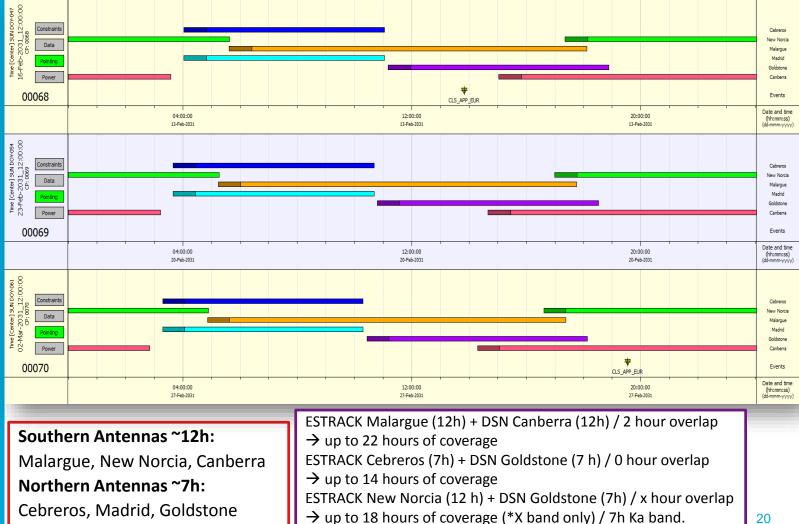
	Ingress time	Jupiter Distance	Longitude	Latitude	Egress time	Jupiter Distance	Longitude	Latitude
1	2031 OCT 09 19:01:45.0	14,784	276,77	- 39.447	2031 OCT 09 21:18:51.0	14,973	10,16	- 39,125
2	2031 OCT 28	14.888	329.63	39,447	2031 OCT 28	15.11	60,605	39,123
2	08:18:23.0	14,000	529,05	37.825	10:40:01.0	15,11	00,005	37,558
3	2031 NOV 15	15.206	9,9563	-	2031 NOV 16	15.572	95,423	-
	21:56:33.0	,		39,034	00:26:52.0			42,423
4	2032 JAN 20	19,686	124,16	-	2032 JAN 20	19,77	225,6	-
	03:22:55.0			56,285	05:24:18.0			55, 6 05
5	2032 FEB 05	15,363	222,29	-	2032 FEB 05	15,321	309,36	-
6	13:43:27.0 2032 FEB 18	15,347	0.1477	38,718	16:12:58.0 2032 FEB 18	15.322	84.276	37,257
0	15:34:34.0	15,547	0,1477	36,115	18:09:33.0	15,522	84,270	34,666
7	2032 MAR 02	15,278	139.25	-32.73	2032 MAR 02	15.248	220,87	-
	17:23:03.0	15,270	100,20	52,75	20:02:51.0	15,210	220,07	30,672
8	2032 MAR 15	15,36	135,8	-	2032 MAR 15	15,308	213,22	-
	13:11:18.0			30,776	15:58:28.0			28,074
9	2032 MAR 28	15,49	57,769	-	2032 MAR 28	15,447	132,29	-
	11:02:18.0			28,315	13:54:39.0			25,588
10	2032 APR 10 09:30:00.0	15,475	317,16	- 26.194	2032 APR 10 12:25:37.0	15,444	29,891	- 23,484
11	2032 APR 23	15.474	224,4	-24,45	2032 APR 23	15,451	295,74	20,484
11	07:44:00.0	15,777	224,4	-24,45	10:42:10.0	15,451	295,14	21.757
12	2032 MAY 06	15,38	143,72	-	2032 MAY 06	15,327	213.62	-19.01
	05:37:17.0			22,134	08:38:05.0		,	
13	2032 MAY 18	15,456	209,63	-	2032 MAY 18	15,394	276,56	-
	03:36:29.0			20,624	06:42:21.0			17,573
14	2032 MAY 30	15,459	262,9	-	2032 MAY 30	15,396	329,58	-
15	01:56:03.0 2032 JUN 10	15,397	328.19	20,187	05:02:23.0 2032 JUN 11	15.294	34.66	17,145
15	23:55:12.0	15,597	528,19	19,461	03:01:57.0	15,294	54,00	16.112
16	2032 JUN 21	15,826	47.987	-	2032 JUN 21	15.715	108,83	-
	15:43:45.0	15,020	,	18,258	18:59:52.0	10,710	100,05	15,203
17	2032 JUL 02	15,805	39,89	-	2032 JUL 02	15,671	100,92	-
	09:57:32.0			18,566	13:13:20.0			15,429
18	2032 JUL 12	16,035	4,9261	-	2032 JUL 12	15,876	60,579	-
10	09:04:49.0	16.115	202.15	15,239	12:29:41.0	10.000	0.07.71	12,617
19	2032 JUL 22 08:58:22.0	16,115	302,15	- 15.934	2032 JUL 22 12:23:20.0	15,951	357,71	- 13.297
20	2032 AUG 01	16.145	235.24	-	2032 AUG 01	15.978	291.04	15,297
20	08:59:02.0	10,145	233,24	16.682	12:23:33.0	13,770	291,04	14.029
21	2032 AUG 11	16,162	165,62	-	2032 AUG 11	15,991	221,67	-
	09:04:37.0			17,387	12:28:40.0		· ·	14,716


Earth Occultation by Jupiter (seen from Juice)

(https://www.cosmos.esa.int/web/juice/)

Earth Occultation by Ganymede (seen from Juice)

[6ep]


atitude

TUDelft

(https://www.cosmos.esa.int/web/juice/)

Ground Station Visibility (examples)

ÍUDelft

Conclusions

- 1. Identified the different opportunities for PRIDE in synergy with 3GM (Spacecraft tracking & atmospheric science).
- 2. Explored the GS/downlink visibilities from the timeline tool (*Malargue visibility events SOC*).

Conclusions and Future Plans

ŤUDelft

3. Confirmation from 3GM team/WG's on the instrument modes/occultations/ opportunities (*main occultation and eclipse events-calculated with SOLab eFinder - SOC*).

Major activities in 2019-20 for JUICE

- 1. PRIDE ops scenarios for all relevant mission segments/sequences (in cooperation with all WG's and SWT) for eg: cruise phase science.
- 2. Continuation of the catalogue densification.
- 3. Data archive of useful PRIDE dataset
- 4. Ka-band functionality: tests and developments.
- Synergy between PRIDE, 3GM and other instruments (GALA and JANUS) and reformulate the responsibilities.

