ROT54 Antenna at 1.65, 10 and 36 GHz

- Kees van 't Klooster
- "XXIII Conference on Radio Telescopes and Radio Interferometers",
- "Virtually in Yerevan"
- 18 sept.2020"

- Pattern calculations made using physical optics for both main- and sub-reflector
- No blockage and multiple reflection in analysis ("does not fit on my notebook..."),
- A comparison with a measured pattern (relative, linear scale) at 10 GHz is reasonable,
- A gain near to 69 dBi is predicted at 10 GHz
- 1 dB reduction in gain (1 λ lateral feed displacement.
- Measured gain is 8*10^6 or 69 dBi (measured by P.M. Herouni, see presentation of Dr Arevik Sargsyan in Granada, EVN)
- Gain comparison: a coincidence, given a totally different feed, absence of multiple reflection and blockage not considered.....

- Antenna geometry parametrized, known and assumed data:
 - R-main =27 meter,
 - R-sub = near to 5 meter,
 - Vertex subreflector and feed location assumed (respectively 12.96 m and 16.2m in this case),
 - Just as an example...

- Corrugated scalar feed horn using an old known feed model, slightly adapted.
- Comparable feed-horns were developed for Dwingeloo and Westerbork antennas by Technical University Eindhoven (by Jeuken, Knoben, Lambrechtse <1969).
- Spherical wave expansion used, illuminating the sub reflector

- Flat top pattern convenient. Gives 1 dB more gain compared to simple open-ended circular waveguide with one or two corrugations
- Cross-polarization feed <-30 dB,
- Sensitivity to the back <-30 dB,
- And there is more: bandwidth and pattern performance stability.
- Feed can be simplified somewhat for example using less corrugations, if needed for accommodation, at cost of "flat-top" tbd.
- Other feeds considered, also so-called "Wohlleben feed" known from Effelsberg telescope-antenna. But then:
 - pattern not stable with frequency (it depends..)
 - cross-polarization much worse.

- Spherical wave expansion used, full vectorial. Illumination of parametrized sub reflector.
- Physical optics used on shaped sub-reflector, subsequently on the spherical main-reflector
 - Blockage and multiple reflections not taken into account,
 - Both possible, but not needed now, takes computational time, so left to the reader with better computational facility..

- Radiation pattern with high first sidelobes, as anticipated.
- Low far-out level for $|\theta| > 1^{\circ}$.
- Spillover feed pattern confined within (metal) spherical reflector, and reflected into free space
- → Spill-over never reaches warm Earth, so <u>low noise</u>

ROT54 Radio-telescope, (cont'd) measured pattern

Рис.3.12. ДН антенны радиотелескопа РОТ-54/2.6, измеренные с помощью геостационарного спутника Горизонт VI.

- ----- открытый конец волновода,
- -..-..- открытый конец волновода с

тефлоновой втулкой с вибратором, 18 September 2020 пирамидальный ступенчатый рупор

- ROT54 measured pattern using <u>Gorizont</u> 10 GHz signal (geostationary) (ref: PhD thesis Dr. Sargsyan).
- In that reference: Four different feeds
 - Conical horn
 - Open ended waveguide
 - Open ended waveguide with a dipole and teflon sleeve
 - Pyramidal stepped horn
- NOTE narrow beam: (remember this...)
 - Half-power beam-width ~3.7 ' (0.062 deg)

ROT54 Radio-telescope, Measured and calculated pattern (linear scale)

Рис. 3.12. ДН антенны радиотелескопа РОТ-54/2.6, измеренные с помощью геостационарного спутника Горизонт VI.

- ____ конический рупор,
- открытый конец волновода,
- -..-..- открытый конец волновода с

тефлоновой втулкой с вибратором, 18 September 2020 пирамидальный ступенчатый рупор.

Predicted halfpower beamwidth different...: 0.08 deg (4.8') Measurement shows non-linearity in scale, but recall: pointing criticality.

18 September 2020

ROT54 Radio-telescope, 1.65 GHz feed in focus

- Feed assumed as some old feed in telescopes
 - → Effelsberg (D) (recall Wohlleben..)
 - \rightarrow Interferometer at Radboud University (NL).
- Linearly polarized , 1.45 GHz and 1.65 GHz,
- High spill over, but not reaching a warm Earth,
- Feed: roughly ~ 25 cm axially, ~14 cm diam, etc.
- The feed can operate near H-line: 1.44 GHz,
 - But: worse performance shown at 1.45 GHz

Note: 52.8 dBi gain @1.65 GHz, compare to "Herouni table" (53 dBi)

ROT54 radio-telescope KvtK

36 GHz....1 bottle of Ararat cognac

- Calculation with feed model, 1.1 $\lambda, \ 1 \ choke$
- Use of septet can assist pointing problematics for 1 arcmin beam....

Parameter	Wavelength (mm)					
	200	30	8	3	2	1
				(expected)	(expected)	(expected)
Beam width	25'	3.7'	1'	22''	14''	7'
Effective surface, m ²	560	560	540	520	482	350
Gain	<u>02*1⁵</u>	<u>8*10⁶</u>	<u>108</u>	7*10 ⁸	1.5*10 ⁹	4.4*10
Herouni	<u>53 dBi</u>	<u>69 dBi</u>	<u>80dBi</u>			9
This prediction:	<u>52.8dBi</u>	<u>69 dBi</u>	<u>79.2 dBi</u>			
Efficiency	0.7	0.7	0.67	0.65	0.6	0.4
Self noises , K°	5	4	2.8	3	To be measured	
Sensitivity						
(ratio of Eff. Surf to self	112	140	193	173	To be measured	
noises)						
3 September 2020		ROT54 radio	-telescope KvtK			

But Accurate Cardan Control Necessary

Beam pointing angular accuracy required.....!

- Pointing accuracy for ~4 arcmin
- If ±1 arcmin allowed, a signal level ~±1 dB
- For a lever length of 60 cm, the spindle axis movement to be controlled accurately, so:..
- ±1 arcmin = ±0.175mm spindle movement (~10 GHz)
- And:
 - Smaller at 36 GHz.... (<±0.05mm) ...
- <u>Criticality: mechanical pointing</u> <u>control obvious..., additional to</u> <u>repair of Cardan</u>

Concluding Remarks, ROT54 Radio-telescope,

- Gain value compares with P. Herouni's table of results:
 - "too good to be true ?"
- "It seems ok, see table for 1.65, 10 and 36 GHz, (slight differences in labda)"
- Prediction model confirmed (but not exactly identical configuration as real ROT54),
- Beam-widths not direct comparable, illumination dependent,
- First sidelobe level in general high, not too much control capability with realistic illuminations

Concluding Remarks, ROT54 Radio-telescope

Work needed to be able to point.

- Accuracies, tolerancing, mechanical design→ (non-linear) leverspindle movement,
- Accuracy to control the cardan axes for "few arcmin beamwidth",
- First comparison illustrative for necessary pointing(-stability),
- Pointing stability and control, thermal stability, pointing knowledge,
- Effects in control scheme ("dommekracht- control" ?), idem for other actuators in control scheme,
- \rightarrow Tables and validity in pointing control.

No more time, no shadow, so over-time \rightarrow

Շնորհակալություն

Acknowledgements to Technical University of Eindhoven !

ROT54 radio-telescop