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Summary: We report on investigations on the suitability of protocols for use with 

high-bandwidth e-VLBI; for the transfer of high bandwidth e-VLBI data 
across international links and for distributed correlation. The time delay 
behaviour of TCP has been investigated and TCP variants have been 
evaluated to ascertain the benefits for real-time data transfer. A new UDP 
based transfer system (VLBI_UDP) has been developed, tested and 
portions of the code used to attain correlation at 1024Mbps over 1Gbps 
light paths by selective packet dropping. A new alternative protocol, 
DCCP, has also been studied. Measurements of throughput on trans-
Atlantic links have been made with the aim of investigating possible 
global e-VLBI work in future. Tests of multicast techniques on both light 
and heavily loaded networks have been made showing that it is possible to 
make more efficient use of lightly loaded networks e.g. a light path. 
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1 Introduction 
This is a report on the testing of protocols for high data rate data transfer in e-VLBI, and forms part of 
deliverable D150 in the EXPReS project (under the FABRIC JRA1). 
 
e-VLBI data has the feature that the data are continuously streamed at constant bit-rate. The regular 
and timely arrival of data at the correlator is a major concern and is often of greater importance than 
reliability and minimising data loss. This has a number of repercussions for protocols: Transmission 
Control Protocol (TCP) is reliable by design but its congestion control behaviour is in contrast to our 
desire to maintain transmission at the constant bit-rate generated from the telescope signals. 
Congestion control can cause delay in individual data streams and skew between data steams from 
telescopes in the array may impair correlator performance. 
 
VLBI and radio astronomy data are noise-like: the signals are obtained from the statistical properties 
of the noise, in particular the cross-correlation coefficient. Losing 50% in the number of packets 
received in an experiment has the same effect on signal to noise as losing 50% of the bandwidth. 
Selective dropping of packets is therefore as effective a method of congestion control as rate 
reduction.  The adaptation of user datagram protocol (UDP) for e-VLBI is probably the optimum 
solution, provided selective packet dropping can be implemented without loss of correlation. 
However, the non-congestion-controlled, connectionless nature of UDP transport may make it 
undesirable for use over shared, packet switched networks: network providers could interpret high 
data-rate UDP data streams as a denial of service attack, and switch off such connections to preserve 
quality of service for other users. For such connections, TCP or one its variants is more suitable, with 
the unreliable yet congestion-aware DCCP protocol the apparently ideal for e-VLBI, though not yet at 
the state where it can be used reliably. 
 
To investigate these issues we have run a number of sub-projects:  
 

• TCP_delay – where we measure the effect of TCP rate reduction on the time of arrival of 
packets, and see if increasing buffer size can compensate. Using TCP Reno as a baseline, we 
investigate the relative benefits of advanced congestion control algorithms. 

• VLBI_UDP – where software for the transfer of e-VLBI data by UDP has been developed to 
fit in with requirements of VLBI systems. The software enabled tests of the effects of packet 
loss on the JIVE correlator to be undertaken and the demonstration of high data-rate e-VLBI 
over UDP. 

• A new protocol, DCCP has been recently implemented in the Linux kernel. The suitability of 
this protocol for e-VLBI is investigated in this report. 

• Tests on a trans-Atlantic link undertaken to determine the characteristics of dedicated 
lightpaths over long distances. 

• Tests on the use of multicast techniques on a heavily loaded networks at 2 Mps data rates  and 
at Gbps data rates on the links to JIVE. The latter has proven successful and is used routinely 
in e-VLBI operations 

 
These workstreams are described in detail in the following sections. 
 
Much of the connectivity for high  bandwidth signals in European eVLBI is via dedicated light paths 
(usually made by combing VLANs) though the academic networks.This means that other users are not 
troubled by eVLBI traffic, there is no denial of service even when  the full capacity is used for eVLBI. 
We are therefore able to use UDP protocols, which would not be possible in a fully IP switched 
network. 
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2 Constant Bit-Rate Data Transfer over TCP 

2.1 Introduction 
Transmission Control Protocol (TCP) is the most widely used transport protocol on the Internet, 
largely because it features reliable transfer of data, which is a common requirement. However, it is not 
ideal to use for constant bit-rate applications because TCP throughput can vary wildly in a lossy 
environment. Many applications using constant bit-rate data transfer desire timely arrival of data but 
the rate fluctuations of TCP mean that timely arrival of data is not guaranteed. We examine the effect 
of packet loss on packet arrival times and investigate whether packet loss and the consequent effect on 
throughput delays the data irrecoverably. The performance of TCP from the perspective of data arrival 
time will determine the suitability for real-time applications, such as e-VLBI. Electronic Very Long 
Baseline Interferometry (e-VLBI) is a technique used for high-resolution observations in radio 
astronomy which involves the transmission of constant bit-rate data streams which are generated in 
real-time. Timely arrival of data is a fundamental requirement of e-VLBI and data are often 
transmitted using TCP, hence tests were conducted using constant bit-rate flows at rates of up to 512 
Mbit/s to be representative of e-VLBI observations. 

2.2 Transmission Control Protocol 

2.2.1 Properties of TCP 
TCP is connection-oriented and reliable, ensuring that data sent will be perfectly replicated at the 
receiver, uncorrupted and in the byte-order sent. From the perspective of the application TCP ensures 
that the byte stream sent is the same as the byte stream received. Data corruption is detected by 
checksums and the receipt of all data (reliability) is ensured by using automatic repeat-request (ARQ), 
whereby the receiving system sends messages (ACKs) back to the sending system to acknowledge the 
arrival of data and hence indicate the missing data to be retransmitted. TCP assumes lost data packets 
are due to network congestion and attempts to mitigate congestion by varying the transmit rate - a 
process known as congestion avoidance, of great importance and described in more detail later. 

2.2.2 High performance TCP 
To make effective use of TCP, especially with high-capacity networks, it is often necessary to tune 
certain parameters. The end-hosts maintain windows over the data and to use the full capacity of a 
link the windows must be sized to the bandwidth-delay product (BDP) to allow sufficient “inflight” 
unacknowledged segments [1]. In this investigation, a desired constant bit rate CBR was considered, 
where bandwidth delay product, BDP, is expressed as: 
 

BDP =CBR·RTT    Equation 2-1 
 
where RTT = round-trip time. With windows sized to the BDP, steady line-rate throughput is 
achievable if we have no packet losses and so this practice is a generally recommended step to tune a 
TCP connection. In the event of packet loss the size of one window, the congestion window, on the 
sending host is adjusted to limit the maximum instantaneous throughput. 

2.2.3 Reaction to loss 
When TCP detects a lost packet it is assumed that the loss was due to network congestion and TCP 
enters a congestion avoidance phase, altering the achievable transmit rate dramatically by adjusting 
the congestion window. This feature of TCP was implemented to prevent congestion collapse of the 
Internet where competing flows reduce the useful throughput to zero. It is the congestion avoidance 
behaviour of TCP that creates problems for constant bit-rate flows. The standard NewReno response 
to congestion is a decrease of the congestion window by a factor of 2, followed by an additive 
increase of 1 packet per round-trip time. This gives the throughput a characteristic sawtooth shape 
when a packet loss is detected - a sudden dramatic reduction of the congestion window, followed by a 
gradual linear increase. Considering this sawtooth congestion avoidance response, as shown in Figure 
2-1, the amount of data that is delayed can be calculated. 
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Figure 2-1 Behaviour of the congestion window in TCP 
 

2.2.4 Delayed data 
When a packet is lost, the equations of TCP congestion avoidance determine both the decrease of the 
congestion window and the rate of increase. If we consider a pre-loss throughput of CBR, it can be 
calculated that the time taken to regain CBR throughput is given by: 

   

MSS2

2
 RTTCBR

t   recovery

∗

∗=     Equation 2-2 

 
where MSS is the maximum segment size, the maximum amount of data that TCP can encapsulate in 
one packet [1]. 
Figure 2-1 Theoretical action of TCP congestion avoidance with CBR data transfer. Comparing (a) 
and (b) we see the effect of dramatically increased buffer size. The shaded area of delayed data in (a) 
is compensated for in (b), transmitted faster than the constant bit-rate, having been buffered on the 
sending host 
 
The shaded triangular area in Figure 2-1(a), whose presence is due to a packet loss, has area 
proportional to the amount of data that has been delayed. The area is proportional to the recovery time 
and can be represented simply as: 

MSS8

2
 RTT

2
CBR

∗

∗
    Equation 2-3 

 
For applications like e-VLBI, where data are transferred over large distances at high rates it is 
essential to note from  Equation 2-3 that the amount of delayed data scales with the square of the 
throughput and the square of the round-trip time. 

2.3 Constant bit-rate data over TCP 
It is often said in the literature that TCP is largely unsuitable for real-time applications and constant 
bit-rate flows because of the variable rate of TCP over a lossy connection due to congestion avoidance 
[2],[3],[4]. If CBR data is streamed over TCP, as with some multimedia applications or e-VLBI, the 
reduced throughput due to packet loss leads to a data arrival rate on the receiver of less than the 
original constant bit-rate. If the processing or playback at the application level is not to stall then 
sufficient data must be stored in a play-out buffer to compensate for the lower data-rate at the 
transport level, allowing CBR data arrival at the application level. This is common practice for 

(a) BDP buffer size (b) Expanded buffer size 
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streaming multimedia applications, requiring an initial buffering period and hence a delay between the 
start of the transfer and the start of the playback. 
 
The situation of bulk data transfer is quite well researched and understood [5],[6], in contrast to the 
equivalent situation but where the CBR data is generated and transferred in real-time. When a CBR 
data stream is generated in real-time and cannot be stalled then we must transfer the data at a steady 
CBR else we have to either discard or buffer the data at the sending end. 

2.3.1  Regaining timely arrival 
If we temporarily store the delayed data on the sending host and can subsequently transfer it faster 
than the constant bit-rate then we should be able to regain timely arrival of data at the receiving host. 
We require the data to be buffered and the maximum window size must permit transfers at a rate 
higher than the CBR. In the investigation that follows, both functions are performed using the socket 
buffers in Linux. 
 
Data from a Linux application, destined for a network, is buffered in a socket buffer, the size of which 
we can specify through kernel and application parameters. The socket buffer in Linux serves two 
purposes: to retain data for windowing and also as an application buffer, designed to isolate the 
network from effects of the host system, such as scheduling latency of the Linux kernel. Therefore, on 
the sending host, the socket buffers, which are an integral part of TCP/IP in the Linux kernel, can be 
used to buffer the data that is delayed in the event of a loss. 

2.4 Experimental configuration 

2.4.1 Network setup 
The network links used to test constant bit-rate performance over TCP were dedicated fibre optic 
lightpaths with connections to UKLight in the UK peering with NetherLight in the Netherlands. The 
links were tested to have a very low bit-error rate, allowing loss-free data transfers with stable delay 
and jitter characteristics, making for an ideal protocol testing configuration. The lightpaths were used 
to connect hosts in Manchester, Jodrell Bank Observatory and JIVE1 with dedicated point-to-point 1 
Gbit/s connections. From Manchester the round-trip times (RTT) were 1 ms Jodrell and 15 ms to 
JIVE. A connection from Manchester to Jodrell, looped back in the Netherlands gave a RTT of 27 ms. 
 
The computers used as end-hosts were server-quality SuperMicro machines, with all configurations 
tested to give 1 Gbit/s throughput using UDP/IP or TCP/IP over Gigabit Ethernet interfaces. The 
systems used Intel Xeon CPUs and were running Red Hat or Fedora distributions of Linux. Tests were 
performed using kernel versions 2.4.20 and 2.6.19 with negligible difference in TCP performance 
seen between kernel versions. All systems were equipped with onboard Intel e1000 Gigabit Ethernet 
Interfaces. 

2.4.2 Diagnostic software 
TCPdelay [7] is an application written by Richard Hughes-Jones, used to conduct tests using memory-
to-memory TCP streams, sending data to a socket at regular intervals so as to attain a specified 
average data rate, emulating a CBR data stream. TCPdelay measures the time a packet or rather 
message is sent and its subsequent arrival at the application level, allowing measurement of whether 
the data stream is arriving at the receiver in a timely manner. 
 
In order to gain more insight into the behaviour of TCP the web100 kernel patch was used. Web100 
[8] is a kernel patch which provides extended TCP instrumentation, allowing access to number of 
useful TCP related kernel variables, such as the instantaneous value of the congestion window. Packet 
loss on the test networks is rare, so we simulated packet loss in the receiving hosts using a Linux 
kernel patch to discard packets at a configurable, regular rate. 

                                                      
1  JIVE is the Joint Institute for VLBI in Europe, Dwingeloo, Netherlands. 
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2.5 Results 
Using the recommended socket bandwidth-delay product buffer size, the behaviour of a 512 Mbit/s 
CBR TCP stream over a lossy 15 ms connection was studied with 0.9 Mbyte (BDP) socket buffers. 
The observed behaviour is shown in Figure 2-1(a). In the event of a lost packet (deliberately dropped 
on the receiving host) we see the reliable TCP protocol retransmitting a packet (lowest plot) and we 
see the expected congestion window evolution, as detailed earlier and illustrated in Figure 2-1(a). The 
rapid decrease and additive increase of the congestion window is apparent, with recovery of the 
constant bit-rate transfer taking around 10 seconds. We see an amount of delayed data of around 160 
Mbyte, in agreement with  Equation 2-3 when delayed acknowledgements are accounted for.  
 

 
Figure 2-2  Plots of TCP parameters, logged using web100. Kernel patch used to drop packets. 
Top: TCP congestion window (bytes), middle: achieved throughput (Mbit/s), bottom: number of 
packets retransmitted. 
 
Data is further delayed with every subsequent packet lost, the cumulative effect of multiple losses 
shown in Figure 2-3, which demonstrates the effect of loss rate on message arrival time. The lowest 
curve in Figure 2-3 shows the observed timely arrival of data, with higher curves showing lossy 
transfers diverging rapidly away from this ideal. As one may expect, with the throughput dipping 
below the desired rate many times and never exceeding it, the amount of delayed data increases and 
the data arrives later as the duration of the transfer increases. Figure 2-1(b) shows the same network 
configuration of the test in Figure 2-1(a) but with the socket buffers increased to 160 Mbytes, which is 
the calculated amount of delayed data. As explained previously, the intention was that the delayed 
data was stored in the TCP socket buffer, to eventually be transmitted at a rate in excess of the 
constant bit-rate. We see in Figure 2-1(b) that we initially have the same post-loss behaviour as (a) but 
the buffered data means that we can transmit faster as the transfer from the buffer memory is not 
limited to the constant bit-rate. Once the buffered data has been exhausted, we transmit new data at 
the CBR once more, as seen in the Figure 2-1(b). For the duration of the sawtooth the receiver 
experiences delayed data arrival, but subsequent data arrives in a timely manner once more, until the 
next loss. In this situation, with a constant bit-rate of 512 Mbit/s and a 15 ms RTT, we can use a 160 
Mbyte buffer on the sending side to allow timely delivery to be resumed at the receiver. However, the  
use of these large buffers introduces temporary delays in the arrival times of the data of many 
seconds. 
 
Instead of never resuming timely arrival and the departure for timely arrival becoming increasingly 
worse with time, which is the situation with conventionally sized buffers, we can use larger buffers to 
instead suffer only a temporary period of delayed data arrival. One must consider however the 
logistics of providing such large buffers and be able to cope with the temporary period of delay. 

(b) 160 Mbyte (180x BDP) 
buffer 

(a) 0.9 Mbyte (BDP) buffer   
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Figure 2-3 The effect of packet loss on message arrival time. Manchester to Jodrell Bank, looped 
through Amsterdam, 27ms RTT. TCP buffer size 1.8 Mbytes (BDP). 
 
 

 

 (a) 0.9 Mbyte (BDP) buffer   (b) 160 Mbyte (180x BDP) buffer 
 
 

Figure 2.4. (a) and (b) above. Plots of TCP parameters, logged using web100, for a 512Mit/s 
NewReno flow over the 15 ms link, with packet loss found using a kernel patch. The plots in each 
subfigure are as follows: upper: TCP congestion window (bytes), middle: achieved throughput 
(Mbit/s), lower: number of packets retransmitted. 

 
 

 

2.6 Alternative stacks 
 
Having demonstrated that timely constant bit-rate data delivery is possible over our test network, 
using 0.9MB buffers for the 1 ms RTT connection and 160MB for the 15 ms RTT connection, it is 
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desirable to repeat the measurements using the larger RTT links. Calculations show a required buffer 
of 520MB for 27 ms RTT and 6.4 GB for 95 ms and although we could demonstrate timely delivery 
on our dedicated, well-specified end-hosts for the 27 ms RTT connection, RAM constraints would not 
allow us to do so for the 95 ms RTT transatlantic link. Calculations show that it takes 14 minutes to 
resume 512 Mbit/s CBR throughput after a loss on the transatlantic link when using NewReno, a link 
having a 6.3 MB BDP. High-throughput, large RTT networks are well known to exhibit this problem 
with Reno and most of the alternative congestion control algorithms in the Linux kernel are designed 
to alleviate this problem and reduce the time taken to regain full throughput. 
 
Figure 2.5 shows the reaction of H-TCP when a single packet loss is induced. H-TCP can rapidly 
regain timely arrival constant bit-rate delivery after a loss, here requiring socket buffering of 40 MB 
to regain timely delivery in 14 seconds.  
 
 

 
 
 
This is a dramatic improvement over the performance of NewReno, which would require 820 s and 
buffers if 6.4 GB. The other algorithms tested (figure 2.6) also regained timely delivery of data much 
faster than NewReno and using buffers of less than 200 MB in every case. The alternative congestion 
control algorithms are from 14 to 255 times faster to regain timely arrival of data. The relationship 
between recovery time and amount of data buffered is not the same as with NewReno, as we would 
expect as we no longer have the largely linear nature of the AIMD algorithm. 
 
Figure 2.6 shows, from a loss event to the resumption of timely delivery of constant bit-rate data, the 
one-way delay of messages. Comparing the shapes of the plots with that of NewReno in Figure 2.3 
illustrates how the buffer dynamics differ between algorithms. 
 
 
 

 
 

Figure 2.5  Plot of web100 parameters, logged using web100, for a 512Mbit/s H-TCP flow over the 
95ms RTT link. There is one induced packet loss at time 87 s. 
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(a) Scaleable       (b) H-TCP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Cubic       (d) BIC 
 
 
Figure 2.6  Plots of one-way delay vs packet sequence number for different congestion control 
algorithms ( (a) Scaleable, (b) H-TCP, (c) Cubic and (c) BIC. The  plots have a single packet loss at 
the left of the plot, with timely arrival of data attained by the right-hand edge. Note that scales are 
different for each plot to allow a clear view of the shape. 
 
 
 
 

2.6.1 Bursty behaviour 
 
As Figure 2.5 shows, after a packet loss on the 95 ms link, the Web100 data shows very bursty 
behaviour, which was not apparent in the Web100 data for the shorter lightpaths. The Web100 data is 
sampled at 10 ms intervals, which for the transatlantic connection allows details on RTT timescales to 
be clearly seen. The plots for all algorithms on the 95 ms link show that after a packet loss data is 
burst from the socket buffer at line-speed upto that allowed by the TCP congestion window, and then 
we experience a data-free period until the window-increasing acknowledgements return 95 ms later. 
Examination of the TCPdelay timestamps for individual packets reveals the same behaviour for the 15 
ms and 1 ms connections, behaviour which is not apparent from Web100 data due to the sampling 
time being comparable to the feature size. On our networks where we had uncontended 1 Gbps light- 
paths, this bursting was not problematic but this unavoidable bursting of data from the  
sending buffer would be undesirable on a highly contended, shared network.  
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2.7 Conclusions on TCP 
 
Use of TCP/IP to transfer CBR data with normal TCP buffer settings (BDP) leads to delayed data 
arrival in a lossy environment. The delay is to the entire stream of data as all data arriving after the 
first loss will be delayed, with subsequent losses increasing the delay, data arrival times diverging 
from the expected arrival times. For an application such as e-VLBI this behaviour is not acceptable 
and can lead to a loss of correlation and lower quality results as streams from different observing 
stations become desynchronised. 
 
We have used large socket buffers to temporarily store data and demonstrate regaining timely delivery 
of data following a loss. It was necessary to store a large amount of delayed data and subsequently 
transmit it at a rate exceeding the constant bit-rate to achieve the average CBR throughput. The 
practicalities of providing buffers depend strongly on the parameters of the application and network. 
For a 512Mbit/s flow over a connection with a RTT of 15 ms we are required to buffer 160 Mbytes of 
data. The scaling apparent in Equation 2 is an important consideration, with transatlantic distances 
requiring the buffering of upwards of 6 Gbytes of data and temporary departure from timely delivery 
of tens of minutes. This scale of buffering will often prove impractical. Alternative TCP variants can 
be used to good effect, reducing the buffer requirement to under 200MB and the delay to under a 
minute for all algorithms tested (H-TCP, Highspeed, BIC, CUBIC and Scalable TCP).  
The success of the demonstrated approach to regain timely arrival of CBR data depends on the 
networks used. This technique can only be applied for a certain range of loss rates and depends on the 
connection having available capacity above the constant bit-rate. With large amounts of data stored in 
the sender socket buffer, data can burst onto the network, often at the maximum achievable line rate, 
with the potential to cause problems on shared networks and cause further packet loss. Further work 
with competing flows present could help clarify this. 
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3 VLBI_UDP 

3.1 Introduction 
 
e-VLBI requires vast quantities of data to be sent from several remote telescopes over high-speed 
computer networks and the Academic Internet to a single correlator. Currently, VLBI data rates of 
512 Mbit/s are achievable using the Transmission Control Protocol (TCP) [9]. An alternative to TCP 
is the User Datagram Protocol (UDP), which is used by VLBI_UDP. 

3.2 The case for UDP 
 
Whilst e-VLBI in the EVN can run at 512 Mbit/s with TCP, if longer baselines are used, for example 
across the Atlantic, TCP may struggle to sustain a constant 512Mbit/s should any packet loss occur. 
TCP guarantees all data sent will arrive and in the right order, but was designed with congestion 
control algorithms which reduce the transmission rate by half if any packet loss is detected. There are 
both software and hardware buffers in the Mark5A systems which can compensate for a reduced 
transmission rate for short periods of time, but extended slow periods would mean that the buffers 
would  run empty. The higher the round trip time (RTT), proportional to the physical network  
distance, the longer it takes TCP to recover back to its previous rate after a packet loss event [10]. 
UDP, on the other hand, does not guarantee delivery of data, and the transmission rate is governed by 
the user.  
 
 
 
 

 
Figure 3-4 The architecture of the VLBI_UDP programs 
 

3.3 VLBI_UDP architecture 
 
VLBI_UDP was originally written as a monolithic application by Richard Hughes-Jones for a proof 
of concept demonstration at iGrid 2002 emulating of the loads e-VLBI places on the networks. It has 
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since undergone several revisions with extra features being added, and these are detailed below. The 
current architecture is represented graphically in  
 
Figure 3-4. There are 3 components to VLBI_UDP, the sending application, receiving application, 
and the control application. The send & receive components are run as applications with no user 
input. The control application drives the send & receive components, and may be accessed via a 
variety of methods. It can either take user input from the console, commands via a webpage through a 
miniature http interface, or read commands from a file with no user interaction. A single instance of 
the control application controls multiple send/receive pairs. 

3.3.1 Conversion to pthreads 
 
As a monolithic application, VLBI_UDP was consuming almost all available CPU cycles due to 
constant polling, checking if there is data to be moved around. Clearly this is not an optimal situation, 
and so the send and receive programs were both split into 3 threads: control, data input and data 
output. Splitting the application into threads allows each thread to act with a reasonable amount of 
independence from the other threads, whilst still allowing communication between them. 

3.3.2 Ringbuffer 
 
A ring buffer was present in the original iGrid2002 application, but was incomplete so far as it didn’t 
handle out of order packets correctly in all circumstances – not a problem for the demo but needed 
correcting for use with real data. As each UDP packet is received, it is written directly to the next 
usable location in the ring buffer. Each packet has a sequence number which allows missing and out 
of order packets to be detected. If there were one or more packets missing immediately previous to the 
next received packet, then this packet would be in an incorrect position in the ring buffer. In this case, 
a function RingMove() is called, which moves the last packet forward the required number of 
positions within the ring buffer such that it is then correctly placed. The next available location is now 
set to after the new location of the last packet. 
 
Should the ‘missing’ packet(s) subsequently arrive, out of order, then they are first written to the next 
available location as before. The sequence number is checked, and RingMove() is called with a 
negative offset to place the packet back where it should have been. In this case, the next available 
location doesn’t change and so the next packet will be written to where the last packet originally 
arrived. This process is illustrated in Figure 3-5. 
 
 
 

 
Figure 3-5 The processing performed when packets are placed into ring buffer. 
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3.3.3 File access 
To allow for testing with real data, and as a precursor to interfacing with actual VLBI hardware, file 
access was implemented. Linux large file support is used, which was a necessity when dealing with 
VLBI data sets which are almost exclusively >2GB. 

3.3.4 Packet dropping  
A packet dropping function has been added [11], which, when combined with the file access mode, 
facilitates the creation of data sets with missing packets under controlled conditions. This function is 
implemented only in the sender module. The send thread receives a pointer to a packet of data from 
the ring buffer, passes this to the dropping function as a parameter, along with a choice of dropping 
algorithm. The return value is a pointer, which will be the same as that passed to the function if the 
packet was not dropped, else will be a pointer to a portion of memory which will be used to replace 
the dropped packet. The user can specify what this portion of memory should contain, choosing from 
two options; either a random series of bytes, or a special fill pattern. If the correlator system observes 
this fill pattern, then it knows that this portion of data is invalid and therefore should not be correlated. 
Currently there are two algorithms available. The first drops single packets at a steady rate with no 
randomisation, the second can drop a bunch of between 1 and 10 consecutive packets, the value 
chosen randomly. To maintain a fractional loss rate f in the 2nd case, after a bunch of n packets are 
dropped, the subsequent n(1/f - 1) packets are not dropped  

3.4 Results from tests with VLBI_UDP 
VLBI_UDP has been used both as a demonstration tool at events such as iGrid2002, and more 
recently at the GÉANT2 network launch, as well as a tool to probe network conditions over extended 
periods of time. Figure 3-6 demonstrates a 24 hour flow, transmitting data from a PC based in Jodrell 
Bank over a dedicated 1 Gigabit fibre connection into a PC based in Manchester University. Each 
point represents the average received bandwidth in a 30 second period, and it can be seen that rate 
stability is mostly maintained to 1 part in 1000. 
 

Figure 3-6 The measured UDP achievable throughput for a 24 Hour flow from Jodrell Bank 
Observatory to Manchester University. 
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Figure 3-7 Multiple UDP streams into JIVE using VLBI_UDP 
 
Figure 3-7 shows 3 simultaneous transfers into JIVE, one from Manchester travelling over a UKLight 
dedicated 1 Gigabit lightpath, another from Manchester but crossing the conventional packet switched 
Academic Internet, and the third from Bologna again over the conventional packet switched 
Academic Internet. The lightpath performed as expected, with the transmit rate purposely capped at 
800 Mbit/s and showing no packet loss. The second flow was capped at 600 Mbit/s, since this was 
travelling via the Manchester University campus access link and so would have swamped regular 
campus Internet traffic. Packet loss is present here due to contention, most likely over the campus 
access links, and can be seen to decrease through the test period, as the campus traffic decreased. The 
third plot was limited at 400 Mbit/s and gives stable throughput with little packet loss. 

3.5 Results from correlation tests of packet-dropped data 
 
The data used for these tests were recorded from three radio telescopes at a data rate of 256 Mbit/s 
whilst observing a strong astronomical radio source. Two of the sets were left unmodified, whilst the 
third set was processed several times in VLBI_UDP to simulate the effect of lossy network 
transmission. Several copies of the original file were created by this method, with each containing 
packet-dropped data at several loss-rates ranging from 0.5% up to 20%. Correlation was subsequently 
performed with these files against the other two unmodified sets in order to produce two modified 
baselines, and a third unmodified baseline. 
 
The output from the correlations consisted of a series of fringe amplitudes, one for each integration 
period, in this case every second. By comparing the fringe amplitudes obtained from correlating the 
different data sets, it was possible to observe how the missing data affected the correlation process.  
Figure 3-8 shows the effect that lost packets had on the correlation amplitude for the Effelsberg-
Jodrell baseline; the Westerbork-Jodrell baseline produced very similar results and so not included for 
clarity. It can be seen that whilst there is little difference when packets are lost singly or in bunches, 
there is a considerable difference when the fill pattern is used compared to when it is not. 
 
An effect which can not be seen in  

 Manchester - JIVE, NL (UKLight)

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000

Time during the transfer s

W
ir

e 
R

at
e 

M
b

it
/s

  
  

0

0.2

0.4

0.6

0.8

1

%
 P

ac
ke

t 
lo

ss
  

  
g

Manchester - JIVE, NL (Packet switched)

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000

Time during the transfer s

W
ir

e 
R

at
e 

M
b

it
/s

0

0.2

0.4

0.6

0.8

1

%
 P

ac
ke

t 
lo

ss
  

  
g

Bologna - JIVE, NL (Packet switched)

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000

Time during the transfer s

W
ir

e 
R

at
e 

M
b

it
/s

0

0.2

0.4

0.6

0.8

1

%
 P

ac
ke

t 
lo

ss
  

  
g



 18

Figure 3-8 is that at loss rates of 20%, there were several integration periods which produced wildly 
inflated fringe amplitudes. The corresponding correlation weighting for these points was extremely 
low, thus allowing these points to be weighted out when producing  
Figure 3-8. That this happened, indicates a serious loss of correlation and shows an approximate 
threshold at which the effects of packet loss become non-linear. It would therefore be safe to 
recommend that packet loss rates above 15% should be avoided. 
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Figure 3-8 Effect of packet loss on correlation amplitude 
 

3.6 1024 Mbit/s e-VLBI experiments performed over 1 Gbit/s Ethernet links 
 
Due to protocol overheads, it is not possible to transmit a full 1024 Mbit/s stream over standard 1 
Gbit/s Ethernet links, and so the packet-dropping code was developed within VLBI_UDP. For ease of 
use, rather than further modifying VLBI_UDP to be compatible with other applications used within e-
VLBI, it was decided to add portions of code from VLBI_UDP in to the existing Mark5A software. 
Live tests with this modified software were performed and data was successfully correlated at 512 
Mbit/s. At 1024 Mbit/s, packet-dropped data from one antenna was successfully received and decoded 
at the correlator, but due to hardware problems the second antenna was unable to capture data at 1024 
Mbit/s and so a final correlation was not possible.  
 
Inspired by features within VLBI_UDP, programmers at JIVE have created their own version of the 
Mark5A software exclusively for e-VLBI use. Through the use of this, correlation of packet-dropped 
1024 Mbit/s e-VLBI streams from several antennas is regularly achieved. 
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4 Testing of DCCP at the Application Level 

4.1 Introduction 
 
Datagram Congestion Control Protocol (DCCP) [12] is a recently developed transport protocol, 
similar in parts to both TCP and UDP with the intention that certain applications and the transport of 
certain types of data may benefit. Where congestion control is required but reliability is not, DCCP 
provides a transport level option attractive to many applications such as VoIP and e-VLBI. The 
congestion control algorithm, CCID, used by DCCP is selectable, allowing DCCP to be tuned more 
closely to the requirements of a particular application. CCID2 [13] is TCP-like Congestion Control, 
closely emulating Reno TCP while CCID3 [14] is TCP-friendly rate control, minimising rate 
fluctuations whilst maintaining long-term TCP friendly behaviour. 
 
DCCP has been in the Linux kernel since 2.6.14, with recent kernel releases such as 2.6.19 and 2.6.20 
having an improved implementation, incorporating code developed by ESLEA, that is often 
considered as fairly stable and high-performance. We report on the porting of a network testing 
application to DCCP, experiences with creating a stable DCCP testbed and results from initial 
performance tests. 

4.2 Porting of test software 
 
In order to test the performance of DCCP, software tools were required hence DCCPmon [15] is a 
port of UDPmon [17] by the original author, Richard Hughes-Jones. Guidance was given by Andrea 
Bittau to help with the port to DCCP and the resulting application is being used and proving to work 
well. However, the process was not entirely trouble-free – some problems were encountered that were 
perhaps indicative of a DCCP implementation that was in development, rather than complete and 
polished. For example, DCCP related #defines were not to be found in the userland include files, an 
issue mitigated by creating specific include files. Some system calls were missing and the API was in 
a state of flux with functions changing between kernel releases 2.6.19 and 2.6.20, when the software 
was initially developed. Further kernel releases, up to and including 2.6.25, have seen further changes, 
with most DCCP supporting applications failing to compile or run at various points. For this reason, 
and due to limited testing, DCCPmon is currently still considered by the author as experimental and 
consideration for the continual revision of software should be made if use id to be made of DCCP at 
the current stage of its Linux implementation. 
 
During the development of DCCPmon and for corroboration of results, a patched version of iperf [16] 
was used. In addition to the information from the main test application it is desirable to gather data 
from as many other sources as possible. One useful window into the kernel networking stack is 
though the kernel SNMP statistics, however there are currently (as of kernel 2.6.21) no SNMP 
counters for DCCP variables. These statistics would also have been invaluable when problems 
became apparent with certain kernel versions and it would certainly be a worthy addition to the 
implementation at the earliest opportunity. 

4.3 End-host setup 
 
The computers used as end-hosts were server-quality SuperMicro machines, with all configurations 
tested to give 1 Gbit/s throughput using UDP/IP or TCP/IP over Gigabit Ethernet interfaces. The 
systems used Intel Xeon CPUs and were running Scientific Linux or Fedora distributions of Linux. 
We had systems using two Dual Core Intel Xeon Woodcrest 5130 CPUs clocked at 2 GHz, dual-
booting 32-bit and 64-bit distributions of Fedora Core 5. We also had systems with two Intel Xeon 2.4 
GHz Hyper-Threaded CPUs using a 32-bit distribution of Scientific Linux 4.1. All systems were 
equipped with and DCCP tested with on-board Intel e1000 Gigabit Ethernet ports. Tests with UDP 
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and TCP gave stable line-rate performance over all tested networks, including 1 Gbit/s over a 
transatlantic lightpath. 

4.4 Experiences with the Linux DCCP implementations 
 
While developing the DCCPmon program and preparing for performance tests, several different 
Linux kernels have been used, often displaying undesirable effects. With such a new implementation 
of a new protocol it has often been unclear whether we are seeing problems with the DCCP 
implementation or something specific to our systems, however we report on our findings and some of 
the steps taken to achieve a stable DCCP test bed. 

4.4.1 Kernel version 2.6.19-rc1 and 2.6.19-rc5 
 
This kernel version is a release candidate for stable kernel version 2.6.19, which was tested before the 
stable kernel version was released. Using both DCCPmon and iperf it was found that we were not 
getting a working DCCP connection - tcpdump showed that the connection was successfully made, 
with packets exchanged both ways but no ACKs were sent in response to data packets received. In the 
absence of feedback the sender-side DCCP transmit timer progressively fell back until a threshold 
upon which DCCP terminated the connection. 
 
We conducted many diagnostic tests to establish the cause of the problem. Advanced features of the 
network interface card were disabled and DCCP data was sent though a tunneled connection to 
prevent possible discrimination of the new protocol. Eventually, inserting debugging code into the 
kernel showed that data were incorrectly being discarded due to header checksum errors, a problem 
that was later fixed in the network development tree and merged into the stable 2.6.19 kernel release. 
 
With a suitably patched 2.6.19-rc5 kernel DCCPmon was able to measure the throughput as a function 
of the spacing between the packets as shown in Figure 4-1 where a rate of 990 Mbit/s was achieved. 
However, the system was unstable and there were frequent system crashes 
 
 
 

. 
Figure 4-1 Achieved DCCP throughput with CCID2 as a function of the packet spacing. 

4.4.2 Kernel versions 2.6.19 and 2.6.20 
 
As previously noted, the API calls changed slightly, necessitating further development of the test 
software code, after which, with the checksum problems resolved it was hoped that interesting tests 
could be run. 
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The initial results were promising, with CCID2 showing short-term line-rate throughput - a useful 
data rate of around 940 Mbit/s after header overheads. CCID3 had an average rate of around 300 
Kbit/s but unfortunately DCCP proved to be unstable using either CCID on our 64-bit systems. 
Transfers would often only last for a few seconds before the receiving system hung with a kernel 
panic. Some tests would continue for longer, a few minutes with the same throughput performance, 
but all would trigger a kernel panic within four minutes and repeating tests with larger packet sizes 
would lead to a quicker crash. The crash dumps associated with the panic generally indicated that the 
crashes were occurring most regularly in the region of the packet reception code of the network 
interface card (NIC), where memory is allocated to store incoming packets. 
 
Repeating the tests using a 32-bit distribution and kernel on the same computers yielded the same 
behaviour, however the older systems running Scientific Linux on Hyper-Threaded Xeon processors 
proved to be more stable, with extended runs possible, with the majority of transfers persisting until 
deliberately terminated after many tens of minutes. The system logs, however, showed that everything 
was not perfect, with many zero order page allocation failures logged, in a similar context to the 
panics - close to the receive interrupt of the NIC. 

4.5 Towards a stable test bed 
 
Analysis of crash dumps and kernel messages showed that most error messages were generated when 
memory was being allocated in NIC RX IRQ handler. To attempt to fix the problem the operation of 
the NIC driver was analysed together with aspects of the kernel memory management code. In 
general, when a request is made for memory allocation, the request will either be serviced 
immediately (if memory is available) or it will be blocked while sufficient memory is reclaimed. 
However, when memory allocation is requested in an interrupt context, for example memory 
allocation to store received packets, blocking is forbidden. In order for the memory allocation to have 
a higher chance of succeeding, the kernel reserves some memory specifically for this situation where 
the allocation is classed as atomic. The amount of memory reserved for atomic allocations is 
determined by the value of the min_free_kbytes sysctl variable. 
 
Increasing the min_free_kbytes parameter in the receiving host from the default value of 5741 to 
65535 proved to prevent all the previously seen error messages, though it is not entirely clear to us 
why the memory allocation problems originally occur. It is possible that the default value of 
min_free_kbytes is not sufficient relative to the time between scheduled runs of the memory 
management daemon (e.g. kswapd), which are scheduled to keep that minimum amount of memory 
free. A larger value of min_free_kbytes may mean that the reserved memory is never filled before the 
memory management routines can be run. As we do not encounter similar problems with UDP and 
TCP, it is possible that the higher CPU utilisation of DCCP could cause such a situation by using 
more CPU time. It is strange that on one system the allocation failures prompted error messages while 
on another the result was a fatal system crash. 
 
The problem is not entirely mitigated though as even with the increased value of min_free_kbytes 
crashes persist if the packet size is increased sufficiently. More investigation is needed to gain a full 
understanding of this unwanted feature of our DCCP test. 

4.6 Results of recent tests 
 
With an increased value of min_free_kbytes on the receiving hosts, the systems proved to be stable 
with 1500 Byte packets, with no tests generating error messages of any kind. Every test, with flow 
durations of up to 2 hours, remained stable and was terminated gracefully at the predetermined time, 
using all kernel versions of 2.6.19 or later. Having a stable test bed has allowed preliminary tests of 
DCCP throughput performance, as outlined below. 
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Figure 4-2 Comparison of the throughput achieved for CCID 2 and 3 using iperf with 5 s sampling. 

4.6.1 Back-to-back tests 
 
With any two systems CCID2 can attain the maximum possible data rate of 940 Mbit/s, which is the 
line-rate over Gigabit Ethernet and stable for the duration of the test. This result is illustrated in Figure 
4-2(a), with Figure 4.2(b) showing the different behaviour of CCID3. With CCID3 there is an initial 
period with an average rate of only 300 Kbit/s, with the regular rate variation detailed in Figure 4-3. 
After a number of packets (around 65,500) the rate jumped to line-rate and remained steady, as seen 
in Figure 4-2(b). This is strange behaviour, with the number of packets being indicative with a 16-bit 
overflow perhaps, but there have been a lot of patches produced for CCID3 recently which have not 
yet made it into the stable Linux tree. Using a development tree and patches from numerous authors 
changes the CCID3 behaviour completely. The most appropriate comment to make is that CCID3 is 
developing and the performance of current stable kernels is not indicative of what is be achieved by 
developers. 
 

Figure 4-3 Expanded views showing the variation in the CCID3 iperf throughput during the initial 
part of the test. 

4.6.2 Tests over extended networks 
 
Over a transatlantic connection, with end-hosts in Manchester and Chicago, using UDP and TCP we 
can achieve line-rate throughput (see next section). Although the back-to-back performance of DCCP 
between identical systems gave line-rate, over the 94 ms transatlantic lightpath only a steady 130 
Mbit/s was attained. The performance of DCCP seemed to be CPU limited at the sender, with one 
CPU showing an average of 98% load, compared to the load at line-rate back-to-back of 82%. 
Increased CPU load with increasing round-trip time can sometimes be observed with TCP flows but it 
is not immediately obvious that this should be the case with DCCP and it is curious that the effect 
seems so dramatic. The performance of DCCP needs to be investigated further over different 
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distances and with different systems. CPU load profiles can hopefully yield further useful information 
about the performance of DCCP. 

4.7 Developing a new CCID 
VLBI has a clear requirement to move constant bit-rate data and can tolerate high-levels of packet 
loss, making UDP seem like the ideal transport protocol. Other applications have similar 
requirements, with streaming media and VoIP being examples of applications where constant bit-rate 
can be advantageous and packet loss is often tolerable. However, there is concern from network 
providers that UDP traffic could overwhelm other traffic and overload the network. Concerns and 
opinions have been voiced and mitigating options have been discussed at recent meetings such as the 
EXPReS & EVN-NREN meeting in Zaandam, NL and PFLDnet 2007 / IRTF workshop in Marina 
Del Rey, US, with input from Kees Neggers, SURFnet; Glen Turner, AARNET; and Aaron Falk, the 
IRTF Chair. One option that the authors support is to use DCCP in combination with a new CCID, 
initially given the name SafeUDP. The proposed CCID aims to address the concerns expressed about 
using plain UDP by implementing something “UDP like” but with network protection. SafeUDP 
would use the DCCP ACK mechanism to detect congestion, following which the congestion would be 
evaluated: to ensure that congestion is not in the end-host and to determine whether the congestion is 
transient. This evaluation step is useful to remove the assumption that all losses are congestion events, 
which is a conservative assumption but in some circumstances often unnecessarily detrimental to 
performance. The application would be notified of the congestion through modified API calls, with 
sendto() and recvfrom(), etc. having new return codes. The application can then take action. If the 
application were to take no action within a reasonable time, this CCID would drop input from the 
application and inform the application that it had done so. This idea is being worked on with the long-
term aim of a draft RFC. 

4.8 DCCP-TP 
 
DCCP-TP (http://www.phelan-4.com/dccp-tp) is an implementation of DCCP, written by reference to 
the RFCs rather than borrowing the existing Linux codebase. The author states that it is optimised for 
portability and he hopes that this feature will make the implementation useful for embedded systems. 
There currently exists a Linux port and work is in progress on a Windows port. The compilation of the 
Linux code is straight-forward once the dependencies are resolved and the end result is a userspace 
DCCP stack and also separate client and server applications to allow testing. 
 
Initial testing gave mixed results, with segmentation faults on some systems but clean running on 
others. For reference, the segmentation faults occurred on a system running a 2.4.20 kernel and one 
system running 2.6 series kernels, though this failure case was unexpected as the success cases were 
on very similar, though not identical, hardware. Attempts to use the supplied client and server 
applications to test DCCP-TP over network links (back-to-back connection and switched) produced 
errors from the userland stack which persisted even if the traffic were routed through an end-to-end 
tunnel to mask the presence of the DCCP protocol. CCID 2 did not work over the local loopback 
interface but a test was successfully performed over loopback with CCID 3. 
 
Using DCCP-TP with CCID 3 over loopback, a connection was successfully established between the 
client and server processes, with messages from the userland stack printed to the console to confirm 
this. Performance over loopback is generally expected to be representative of the maximum 
performance of a protocol as it is a purely logical, low-latency link, however, the performance 
observed was low. In one, quite representative, test, with a transfer of 10,000 packets of 1400 bytes, 
only 9864 packets were received and this took 100 seconds, for a rate of 1.1Mbit/s. 
 
In summary, DCCP-TP is a less mature implementation than the Linux implementation of DCCP but 
it is worthy of note that it is a younger implementation and the work of one person (Tom Phelan). The 
code still being developed and is open source and could be worthy of further investigation if the 
DCCP protocol becomes more pervasive  
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4.9 Conclusions on DCCP 
 
We have seen that the back-to-back performance of DCCP using CCID2 is good, achieving line-rate 
for extended (multiple hour) back-to-back, memory-to-memory transfers. The throughput of CCID3 
was generally lower though there is much current development with performance changing with every 
patch. Given the amount of patches being created by developers it is uncertain at what speed the 
CCID3 implementation in the stable kernel will develop. Tests of CCID2 over extended networks 
have been quite limited to date, with early results showing that DCCP uses much more CPU time and 
achieves a lower rate over a transatlantic lightpath. A rate of 130 Mbit/s to compare with 940 Mbit/s 
back-to-back has been seen, with further work needed to fully assess DCCP performance over long-
distances. Achieving a stable test setup has not been trivial and there are some issues still to be 
resolved. We hope that our investigations of the issues with DCCP on our systems can help improve 
the implementation and make DCCP work “out-of-the” box on more systems. Working round the 
issues we encountered revealed a protocol implementation that we look forward to investigating more 
fully in the near future. Many applications can benefit from DCCP and we hope to extend the utility 
by considering the concerns of and working with network managers to build a new CCID. 
 
It remains to be seen if DCCP will become a well supported transport protocol that can be used with 
few issues like TCP and UDP. It is supported as a  standard by the IETF but needs supporting by 
mature implementations of stacks and acceptance as viable by producers of network hardware and 
software. Many hurdles are apparent in the testing of DCCP and the current recommendation from our 
investigations is that although DCCP shows promise as a transport protocol for e-VLBI and is 
supported as a standard by the IETF, the current implementations of DCCP are not suitable for use in 
a production or even reliable test environment. 
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5 Trans-Atlantic UDP and TCP network tests 

5.1 Testing the trans-Atlantic link 
 
Very long baseline interferometry (VLBI) generates large rates of data from many telescopes 
simultaneously observing a source in the sky. This can require the information to traverse 
intercontinental distances from each telescope to a correlator in order to synthesise high resolution 
images. With the dramatic development of the Internet and high bandwidth networks, it is becoming 
possible to transmit the data over large area networks. This allows the correlation of radio 
astronomical data to be done in real-time, whereas this process would take weeks using conventional 
disk based recording. 
 
Jodrell Bank Observatory has a dark fibre from the MERLIN telescope array to the main campus at 
the University of Manchester, currently this carries two 1 Gigabit network paths. This local network 
connects to UKLight at Manchester Computing [18] via a Cisco 7600 switch. UKLight is a network 
of dedicated optical light paths, operated by UKERNA [19], and provides a guaranteed 1 Gigabit 
network path between Manchester and StarLight [20] in Chicago. Server quality PCs located at 
Jodrell Bank, Manchester and Chicago are connected to this infrastructure and enable network tests to 
be made. 

5.1.1 TCP Bandwidth Tests with iperf 
 
The achievable TCP throughput rates were measured between the PCs at Manchester and Chicago 
with the software package, iperf 0. The results of a test lasting 3.3 hours are plotted in Figure 5-1 and 
show a user data rate of 940 Mbit/s but multiple drops in throughput were observed during the test. 
Despite the network utilising a dedicated lightpath, packet losses were observed and as a result TCP 
goes into the congestion avoidance phase and reduces the transmitted bandwidth. The network 
application tool, iperf was used to measure the maximum throughput for a period of over 3 hours. 

 

 

 
Figure 5-1 A TCP achievable bandwidth test between servers located at Manchester and Chicago.  
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Figure 5-2  (a) (left) The number of UDP packets lost in a throughput test at 940 Mbit/s from Chicago 
to Manchester as a function of the receive buffer size. (b) (right) The same UDPmon data with the 
packet loss axis limited to 1000 counts.  
 

5.1.2 UDP Network Tests 
 
In order to better understand the network behaviour, the UDP protocol was used. Unlike TCP, if a 
UDP packet is lost in the network, the transmission rate is not reduced, nor is the packet resent as 
discussed earlier. This makes UDP an excellent diagnostic tool for troubleshooting network paths. 
The network analysis software package, UDPmon 0, was used to investigate the link between 
Manchester and Chicago by transmitting packets at a constant rate, and reporting packet loss. In order 
to emulate the transmission of e-VLBI science data, 50 million packets were transferred, which took 
about 10 minutes for every test. The number of UDP packets lost as a function of the receive buffer 
size are plotted in Figure 5-2 for a 940 Mbit/s flow from Chicago to Manchester. It shows two effects: 
large intermittent packet losses of >1 % and a much lower loss rate for small receive buffer sizes. 
 
To understand this result, we tested the UDP performance by linking similar servers directly back-to-
back in the lab. (i.e. without the transatlantic network). The application transmitted UDP at line rate 
(940 Mbit/s) and the buffer size of  the receive host was varied from 65 KByte to 300 KByte. Figure 
5-3 shows that packet loss was observed when the receive buffer was less than ~ 230 KByte and at 
low receive buffer sizes there is a linear relationship between packets lost per test and buffer size. 
These losses occurred in the end host when the queue between the UDP stack and the application 
became full. It seems probable that this may be due to effects of the scheduler in the Linux 2.6.20 
kernel de-selecting the UDPmon application. Changing the priority of the UDPmon application using 
nice does not eliminate the loss with small buffers and produced little effect overall when the priority 
was varied across the entire range. Further work would involve changing the priority of kernel 
processes or changing the scheduler algorithm, with the investigation of real-time fully preemptible 
kernels of particular interest.  
 
Increasing the receive buffer size at the application layer did not stop nor reduce the large > 1 %. 
intermittent packet losses shown in Figure 5-2. 
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Figure 5-3 The number of packets lost between two computers directly connected between network 
interface cards (i.e. no transatlantic network).  
 
 

5.1.3 Constant packet loss when running at line rate 
 
The network tests at 940 Mbit/s with UDPmon were repeated in the opposite direction (from 
Manchester to Chicago). The receive buffer was set to 300 KB and the test was performed for a longer 
period of time (~ 30 hours). The number of packets lost as a function of time is shown in Figure 5.4 
.  
 
 

 
 
 
 
Figure 5-4 (left) The number of packets lost in a UDPmon test at 940 Mbit/s from Manchester to 
Chicago as a function of time. Once again large intermittent packet losses of >1 % were observed. 
(right) The same UDPmon data with the packet loss axis limited to 5000 counts. A constant loss of at 
least 3000 packets per test is observed. 
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Once again the application reported that occasionally large fractions of the packets (>1%) were lost in 
the network. However this time, as seen in the right plot of  Figure 5-4, a constant loss of at least 3000 
packets per 50,000,000 sent (0.001%) occurred in every test. 

5.2 Network isolation 
 
In order to have characterised this network link, it was important to examine where the data packets 
were dropped at the lowest point of the OSI model, i.e. layer 2. To do this we examined the SNMP 
(simple network management protocol) counters of the network interface cards and the Cisco 7600 
switch connecting to UKLight. The results showed the constant packet loss discussed in section 5.1.3 
were within the Cisco 7600. All 50,000,000 packets were received by the switch throughout each test. 
However if the transmission rate was reduced to 800 Mbit/s, the switch could transmit all 50,000,000 
packets without loss. 
 
We tested the switch’s interface from Jodrell Bank to the Cisco 7600 using a different connection to 
the computer in the University of Manchester campus. Both the switch’s SNMP counts and 
UDPmon’s reports showed the switch transmitted every packet at line rate without packet loss in this 
configuration. The ports used on the 7600 for these tests and those showing packet loss were on 
different types of switch line cards, and this could have an effect. 

5.2.1 UKERNA’s maintenance 
 
We concluded through a process of elimination that the large intermittent packet loss of > 1% was 
therefore within UKLight. After private communication with UKERNA, now known as JANET, it is 
believed the network issues were due to a broken fibre on the Manchester Computing to StarLight 
connection. After multiple maintenance tickets were issued by UKLight, we repeated the UDPmon 
tests. 
 
The configuration of the local network from Jodrell Bank into UKLight did not give the constant 
packet loss seen in section 5.1.3 even at line rate. The results in Figure 5.5 show that when running at 
line rate (940 Mbit/s) from Jodrell Bank to Chicago after the network maintenance, very few packets 
were lost over a period of 2.5 days. Over 20 billion packets were transmitted (~ 200 TB) with the loss 
of only four packets in the network. 

Figure 5-5 UDPmon tests from Jodrell Bank to Chicago sending UDP packets at 940 Mbit/s. Packet 
loss is shown against time. Over 200 TB of data was transferred over a period of over 60 hours. Only 
4 packets were lost throughout the experiment. 
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5.3 Conclusion on the Trans-Atlantic Tests 
 
This work demonstrates some of the challenges encountered when using high bandwidth networks. 
Software application tools have simulated the date rates required by e-VLBI science by continually 
sending large numbers of packets for many hours. This has shown the need for the receive buffers of 
the applications to be capable enough to collect data at these rates for long periods of time. Issues 
have arisen with the Cisco 7600 switch showing, that under certain circumstances the instrument does 
not perform as expected. This highlights the requirement to identify and test equipment to maximum 
abilities. Problems with the link were isolated by eliminating the client, end-host servers and local 
network by inspecting level 2 SNMP packet counts. 
 
This led us to confidently conclude that large packet losses initially observed were within UKERNA’s 
UKLight network. After maintenance on UKLight, our tests were repeated for a large time period (~ 3 
days). This successfully showed it was possible to transmit packets between Manchester and Chicago 
at 940 Mbit/s without losing a significant number of packets. 
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6 Multicast 
 
The appropriate protocol for the transfer of e-VLBI data when using distributed processing is an area 
for investigation. VLBI depends on cross correlation, a situation where an array of n telescopes has a 
much larger number of potential telescope pairs whose signals must be correlated. The relationship 
here can be expressed as n-choose-2, as discussed later. Individual telescope streams or blocks of data 
need to be used for more than one correlation operation. In a distributed correlator, this one-to-many 
relationship means that IP multicast is worthy of investigation as efficient data replication is a key 
feature of the technology. 

6.1 Terminology and introduction 
Unicast refers to the transmission of data from one host to another, using a one-to-one address to host 
relationship. Broadcast is a transmission to all the hosts on a subnet, for example an Ethernet ARP 
request to the broadcast MAC address FF:FF:FF:FF:FF:FF. Multicast is a transfer from one host to 
many where the destination hosts are well defined and represented by one 'group' address. Multicast 
can also be many-to-many hosts but we will not consider this in discussion. 
 
A naive summary of multicast operation is as follows: clients join a multicast group using IGMP 
messages. Group membership is propagated from the client to the local gateway router and then 
between routers on a path between the clients and the server. The server sends data through the 
nearest multicast enabled router, which will propagate through all down-stream interfaces that have 
membership of the same group, as established by the IGMP messages. Multicast can span large areas 
and also limit the number of links used to the minimum required, in contrast to broadcast behaviour, 
which is not selective in its use of interfaces. The operation of multicast is entirely dependant on 
router support for successful operation. Academic networks, such as SuperJANET, support multicast, 
in contrast to most commercial ISPs who do not enable multicast. It is shown later how switches can 
impact the successful application of multicast. 
 
The key feature of IP multicast is its potential for low impact data distribution with replication and 
pruning of data packets as required, using a standards track mechanism which is well supported by 
network hardware (though not necessarily widely deployed, as previously mentioned). Due to the one-
to-many relationship, reliability becomes difficult to implement and there is no widely implemented, 
practical, mature solution to reliable multicast. The number of potential back channels is the key 
consideration for both reliability and congestion control. We are effectively restricted to using UDP or 
other unreliable, unidirectional protocols, which is acceptable in many situations as UDP has been 
shown to give acceptable e-VLBI operation. Issues with network owners restricting the use of high-
bandwidth UDP, as discussed earlier, may be easier to resolve given that multicast is more bandwidth 
efficient than unicast on routed networks. Note that although multicast is technically distinct from 
unicast and broadcast, switched networks may elect to employ methods to treat multicast traffic as 
either unicast or broadcast. This is discussed later 
 

6.2 Thought experiment 
Imagine 4 telescope e-VLBI session with telescopes A, B, C, D. Baselines are formed by pairs AB, 
AC, AD, BC, BD, CD - 6 pairs in total. If we assume 1 node processes each baseline, we need 6 PCs 
and we will assume that they are found in one cluster, connected to the internet through a router. 
Without multicast each PC requires 2 streams, meaning that traffic at the ingress link to this 6 PC 
cluster scales as double the number of baselines., or twice 4-choose-2 (generally n-choose-2). With 
multicast, the ingress link only carries 4 (generally, n) 
 
 This is only one possible topology, for which we see a benefit with multicast, but many other 
situations will too. For instance, the membership-request nature of multicast allows widely distributed 
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clusters to request and accept only what is required by them and permissible in terms of bandwidth 
and processing constraints. 
 

No. of 'scopes Baselines Incoming unicast Incoming 
multicast 

Delta 

2 2 2 2 0 

3 6 6 3 3 

4 12 12 4 8 

5 20 20 5 15 

6 30 30 6 24 

7 42 42 7 35 

8 56 56 8 48 

9 71 71 9 63 

10 90 90 10 80 

11 110 110 11 99 

12 132 132 12 120 

 

6.3 Relevant network technologies 

6.3.1 Grid computing 
Grid computing for distributed correlation is discussed in more detail in other EXPReS documents. 
Grid farms commonly comprise of worker nodes that operate through a head node, obtaining files 
from storage elements. This scheme lends itself more to offline processing but even in this situation 
multicast may provide benefits. 

6.3.2 IGMP snooping 
Membership of multicast groups is achieved by the exchange of IGMP messages. A simple layer 2 
Ethernet switch will simply pass these messages as it would any other Ethernet frame and hence have 
no record of the hosts and hence ports that have requested membership of a given multicast stream. 
The default behaviour, to ensure that all interested ports are satisfied, is often to broadcast the frames 
to all ports. This can cause problems if there are high-bandwidth multicast streams or memberships of 
many separate multicast groups. For example, if take a switch with Gigabit Ethernet access ports and 
a 10 Gigabit uplink. If five 256Mbps streams were used, each GE port requiring just two, everything 
should operate fine, but if all ports were broadcasting all five streams then the system would not work 
well. IGMP snooping aims to alleviate this problem by interpreting IGMP messages and building a 
table used to intelligently switch traffic to only subcribers. Multicast will only operate optimally using 
routers or IGMP aware switches – this is an important consideration and individual clusters must be 
assessed for multicast suitability. Again, the membership nature of multicast means that every cluster 
could assess its own requirements and request only the appropriate number of streams to the 
appropriate destinations. 
 

6.4 Experiments 

6.4.1 Testing routed 2Mbps UDP multicast 
The tests comprised a number of desktop PCs on the Manchester University campus joined to 
multicast streams generated by a host located in London. Each stream was 2Mbps. An application was 
written to measure the inter-packet arrival time of the multicast UDP packets, in order to evaluate the 
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suitability of multicast for real-time data. Ideally, we hope for a regular packet spacing, as witnessed 
with unicast UDP. 
 

 
Figure 6-1 Inter-packet arrival time for a 24-hr run over the London – Manchester University 
network. 
 
The lower dense area in Figure 6-1 shows the usual inter-packet arrival time of approximately 6ms, 
with some variation apparent. The detail at the top of the graph comprises latency spikes to values of 
300-400ms, varying over the course of 24 hours; there appears to be a reduction in latency overnight 
(test started 7:37pm, drop therefore is approx 0030 to midday). This trend is probably representative 
of variation of performance with router load. The reduction in latency bears a great resemblance to the 
reduction in traffic forwarded by routers that is seen overnight, as in figure 6-2. 
 

 
 
Figure 6-2 Network Traffic between NNW and SuperJanet4 with the purple line giving the traffic out 
of NNW. This shows the importance for forward looking capacity planning – on 26 Feb the access 
link was upgraded to 2.5Gbit/s.  (Figure from ‘High Bandwidth High Throughput Data Transfers in 
the MB-NG and EU DataTAG Projects’, Richard Hughes-Jones et al., 
http://www.hep.manchester.ac.uk/u/rich/mb-ng/allhands03_v3.doc) 

10 November 2002 

24 February 2003 
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Figure 6-3 Further tests on the London-Manchester multicast link 
 
The correlation of results at locations separated across a campus network indicates an issue arising at 
a common point. The inter-packet spacing at the sending host was verified as correct, so we have 
isolated the issue slightly but there is still a sizable amount of network infrastructure in this subset. 
The variation of maximum latency with time of day, and hence network load, may be indicative of a 
system operating at close to capacity, as one would hope and expect that the operation of network 
hardware is transparent from the user perspective. The latency spikes associated with packet loss is 
often indicative of buffer overflows and the regular periodic nature may indicate a scheduled task 
increasing, for example, router CPU usage. Further investigation showed that the same latency spikes 
could be observed using the same systems with unicast UDP. No spikes were present for UDP 
(multicast not possible to use) if we take measurements of UDP traffic which bypass the campus 
network.  
 
Tests have been repeated after a period of 4 months and many network changes and upgrades in many 
places. The results are now as shown in Figure 6-3. 
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Figure 6-4 Local tests of 1Gbps multicast traffic traversing an unloaded 7609,  
 
 
Tests on an unloaded Ciso 7609 Router showed line rate performance, (Figure 6-4)  with no 
difference between multicast UDP and unicast UDP. The router CPU load was low and the same for 
multicast and unicast, regardless of whether the ports were set to be switchports or routed interfaces. 
Note the much decreased time scale for inter packet delay compared to earlier. Here the results show a 
regular inter-packet latency of 0.56ms, with the points at lower values assumed to be Linux 
scheduling artefacts. This proved to be stable for a test of 24 hours with no packet loss observed, 
showing that multicast could be used for real-time delivery of data, given a proven network. 
 

6.4.2 CPU usage 
We were able to compare CPU loads running unicast and multicast by  simply sending 1Gbps of 
either unicast UDP or multicast data using iperf between two hosts connected using on-board Intel 
E1000 NICs through Cisco 7609 switching ports (Figure 6-5). 
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Figure 6-5  CPU load vs time for Unicast (upper plot) and Multicast (lower plot)data flows,  
 
 
Line rate was achieved and there was no significant difference between CPU load with multicast and 
unicast flows on the sending machine. Figure 6-5 shows that on the receiving machine the Linux 
kernel and the iperf application both used more CPU cycles for the multicast transfer than for the 
unicast transfer. The difference is, however, not huge and it is observed that the CPU requirements for 
multicast UDP are close to those of  unicast UDP and lower than unicast TCP.  
 
Tests over lightpaths were unfortunately not possible over the links available. The IGMP traffic did 
not transit the links successful and it is assumed that this is due to configuration of switches along the 
path. Further investigation is required.  
 
 
 
 
 
 



 36

6.5 Use of Multicast in production e-VLBI 
(Contributed by P. Boven) 
In VLBI, the resolving power of an array increases with the longest projected baseline between 
telescopes. But to properly image both small scale and large scale image structure, it is important to 
have a goodmix of short and long baselines in a VLBI array. The shortest baselines in the array 
determine the sensitivity to large scale structures in the image. In regular e-VLBI the baselines 
(distances between telescopes) span the range of 198 km (Jodrell Bank - Cambridge) to 8419 km 
(Jodrell Bank - Shanghai). On several occasions, we have been able to increase our longest e-VLBI 
baselines by connecting telescopes on other continents. Due to the geographic distribution of radio 
telescopes it has been much harder to include shorter spacings in the e-VLBI array. 
 
MERLIN (Multi Element Radio Linked Interferometer Network) is a VLBI array located in the 
southern half of the UK, operated by Jodrell Bank Observatory. It consists of 7 radio telescopes with 
baselines ranging from 11.2 km (Jodrell Bank - Tabley) to 217 km (Cambridge - Knockin).. The data 
from each 'outstation' is sent to Jodrell Bank via a dedicated microwave link which has a throughput 
of approximately 128Mb/s. 
 
Two of the Merlin telescopes (the MkII at Jodrell Bank and the 32-m at Cambridge) take part 
regularly in EVN and e-VLBI observations, so there are two Mark5 recorders available at Jodrell 
Bank. But Merlin and the EVN can also perform observations together, which greatly increases the 
number of baselines and the ranges they cover. In these instances, the 'home' telescope (Lovell or 
MkII) is connected to one Mark5 recorder, and the 128Mb/s data from each of up to 4 outstations are 
recorded together on the other Mark5. For disk-based observations, the disk-packs with data from 
multiple Merlin outstations will then be shipped to JIVE, where they are duplicated so that the same 
dataset can be mounted on multiple play-back units at JIVE. Each play-back unit applies the 
appropriate delay for its assigned telescope and ignores the data from the other telescopes on the same 
disk-pack, and the data from all telescopes is then correlated together and processed. 
 
To include more MERLIN telescopes in e-VLBI, the same duplication of data needs to happen on the 
fly. For our first experiments, we used the 'Port Mirroring' (aka SPAN) facility of the central e-VLBI 
switch/router at JIVE. By designating the network port for one Mark5 to receive copies for all the 
packets that are leaving the switch destined for another Mark5, the copying itself is fairly easy to 
accomplish. But the networking stack on the 'slave' Mark5 will ignore the incoming stream of copied 
packets because they are addressed to the ethernet MAC address of the 'master' Mark5. And it turns 
out that the ethernet driver for the Marvell Gigabit ethernet adapter in the current Mark5 systems 
cannot change the hardware address for the adapter. At JIVE we also have Chelsio 10Gb/s Ethernet 
interfaces on some Mark5s, and those can easily have their hardware address changed. By setting up a 
'slave' Mark5 with identical Ethernet Mac address and IP number, it will then consider all the 
'mirrored' packets it receives as valid and deliver them to the application layer. This can of course 
only work because the e-VLBI data is sent as a uni-directional stream of UDP packets from telescope 
to JIVE: there is no back traffic at all and we have in fact carried out observations on miss-configured 
lightpaths that only allowed traffic in one direction. Use of the port mirroring technique for combined 
Merlin/e-EVN observations was demonstrated successfully on the 22nd of July 2008 when we 
recorded simultaneous fringes from Cambridge, MkII and Darnhall (see Figure 6-6 below), where the 
data from Cambridge and Darnhall was sent using the same Mark5 at Jodrell Bank. 
 The port mirroring setup, although working perfectly, is not really suited to production use. It does 
not work on all network adapters and requires manual configuration of slave and mirror port on the 
switch/router, and having duplicate ethernet and IP addresses in the network. IP Multicast seems a 
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Figure 6-6 Correlator monitor plots showing fringe amplitude vs delay. 
 
 
perfect match to the requirements of packet duplication for e-VLBI: it is intended for the efficient 
distribution of uni-directional UDP streams.  IP Multicast is a well established and supported internet 
standard, but its actual deployment on the Internet is still fairly limited. And the data rates for e-VLBI 
(512Mb/s in this case) are much higher than the Multicast streams that are encountered on the 
Internet. Jodrell Bank and JIVE are directly connected by two 1Gb/s lightpaths, with only a single 
'router hop' separating the UK based telescopes from the receiving systems at JIVE. This router (the 
JIVE e-VLBI switch/router, a HP Procurve 5412zl) supports Multicast on layer 2 out of the box, but 
for routing Multicast traffic between VLANs, the firmware of the switch had to be upgraded with the 
'Premium Edge' license. This switch is able to handle the packet forwarding and duplication for 
Multicast streams directly in its switching fabric. We have tested that it can easily handle multiple 
simultaneous Multicast streams, each 512Mb/s, without any drop in performance or increase in CPU 
load. 
 
Nowadays all e-VLBI with JIVE is carried out with the 'jive5a' application that was developed at 
JIVE. We use UDP over dedicated network connections (such as lightpaths). The use of UDP is to 
completely sidestep all the problems associated with TCP, such as poor behaviour on long-distance 
paths and implementation specific bugs we've encountered. Adding Multicast capability to this 
software was a fairly simple exercise and we are now regularly using three Merlin telescopes 
for e-VLBI, where previously we were limited to only two. Expanding to a bigger subset of the 
MERLIN telescopes is currently under investigation, but the challenges are now mostly in the areas of 
RF technology and the intricacies of the VLBI recording terminals. 
 

6.6 Conclusions 
As with most results reported here, the network topology is key as to the suitability of the protocol. 
Multicast is perhaps the optimum method for duplicating data streams, but to ensure that one gains the 
advantages and none of the potential drawbacks, topology and hardware support is paramount. 
 
Low data-rate multicast has been shown to exhibit no undesirable features in a widely distributed 
routed environment, once network hardware is functioning correctly. The interpacket spacing is no 
different to that of unicast UDP, even when scaled to 1Gbps (tested in a more local environment). 
Receiving multicast UDP incurs greater SPU usage than unicast, but not more than TCP, leading to 
the recommendation that multicast can be used in place of unicast UDP wherever the benefits are 
desired. This test showed that contrary to our experience with a heavily loaded network, a lightly 
loaded network or a light path may be able to cope well with multicast, as has been shown to be the 
case. 
The use of multiple telescopes in the UK requires multiple data streams on the two light paths 
available from Jodrell Bank to JIVE, and this has successfully been achieved using multicast 
techniques. 
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7 Overall Conclusions and Future Work 
 
Our studies over the last two years have shown the following: 
 
1) The concern in VLBI with the timeliness of data arrival means that TCP is not ideal for the transfer 
of e-VLBI data. However increasing the buffer size by perhaps and order of magnitude allows TCP 
rates to catch up, and produces timely arrival of data with only temporary but significant delays of the 
order of seconds. Other TCP variants have improved preformance in this regard but still need large 
buffers to work effectively. 
 
2) VLBI_UDP has been shown to be able to transport e-VLBI data efficiently. The software is 
capable of being modified to drop packets selectively. Tests on the JIVE correlator have shown that 
the correlation system can stand high packet loss before losing synchronisation. Recent developments 
in selective packet dropping have enabled a closer match between VLBI data rates and those available 
on networks, with negligible effects on correlator performance., and have now become routine. 
 
3) DCCP is potentially of great use in e-VLBI, however further work is required, both on the 
implementation, due to stability problems, and in the application. The correct form of congestion 
control for e-VLBI has yet to be implemented. The controlled flow datagram protocol of choice is not 
yet apparent for e-VLBI. At the moment UDP (on designated lightpaths) is the most commonly used. 
 
4) Tests on the trans-Atlantic links show that high (>500 Mbit/s) data rate transmission is easily 
obtainable once the link has been set up correctly. The tests point out the necessity for full testing 
prior to operations, as the links may not work to full capacity when initially provided. The tests have 
also shown that all the other network components such as Ethernet switches, routers and Network 
Interface Cards also need to be tested at the desired data rates. 
 
5) IP multicast appears to be an appropriate protocol for the transfer of e-VLBI data when using 
distributed correlation, incurring negligible penalties for a vast reduction in traffic, when used with 
appropriate topologies. However heavily loaded networks are likely to give high latency in 
unpredictable ways. Local multicast techniques have enable data from multiple telescopes of the 
MERLIN array in the UK to be used for e-VLBI. 
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