Meq Silhocette

mm-VLBI simulations and parameter estimation

Roger Deane Rhodes University / SKA SA

outline

- MeqTrees: overview and past successes
- MeqSilhouette: mm-VLBI simulation pipeline (pre-alpha)
- Bayesian capabilities and plans

The Measurement Equation

 MeqTrees is (mostly) about building measurement equations, e.g.:

- An m.e. decomposes the observed visibility V_{pq} into intrinsic source properties and per-antenna Jones terms.
- Can describe an endless variety of (linear) physics.
 can add pol. leakage, field rotation angle, etc.

MeqTrees

"Meg" = Measurement Equation

"Trees" = computational trees

Trees = Expression Trees

• Any mathematical function can be represented by a tree:

 $f = \alpha * \sin(b * x + c * y + 1)$

MeqTrees Architecture

A library of RIME components

- TDL scripts essentially specify the structure of RIMEs on the meqserver side
- Modules provide many "pre-cooked" components

۲	TDL Compile-time Options			
	 Start Purr on this MS Simulation mode: Read additional uv-model visibilities from MS 	0	sim only	^
Þ	Measurement Equation options		PSvTensor	
Þ	Sky model			
Þ Þ	 Use Z Jones (ionosphere) Use L Jones (parallactic angle or dipole rotation) 			
~	 Use E Jones (beam) Use 'Siamese.OMS.analytic_beams' module Use 'Siamese OMS pyheams, fits' module 	0		
	 Use 'Siamese.OMS.paf_beams' module Use 'Siamese.OMS.fits_beams0' module 	Ŏ		Ξ
	 Use 'Siamese.OMS.vla_beams' module Use 'Siamese.SBY.lofar_beams' module Apply pointing errors to E 	0		
	Advanced options UV-plane components	Û		
	 Use P Jones (feed angle) Use G Jones (gains/phases) Add noise 			
-	Random generator seed:	0	time	
	Compile		😣 Ca	incel

Performance / Flexibility

 Instrumental subtleties can be implemented very rapidly (10s of lines of Python vs. 100s of lines of C++)

- Without necessarily sacrificing performance
- For extra flexibility, particularly tricky nodes can be prototyped in Python
 - (and historically, none of these "prototypes" have ever needed to be rewritten)

Example applications:

- High dynamic range calibration & imaging (direction dependent calibration, etc.)
- Evaluation of beam-related effects
- Prime focus vs offset Gregorian performance
- Element gain drifts in phased array feeds
- Fundamental sensitivity limits due to beam instability
- Ionosphere and Epoch of Reionization sims
- Weak lensing simulations (incl. SKA1)
- MC & Bayesian sampling
- Generating training data for machine learning

3C147 field — JVLA L-band (C/D config) Oleg Smirnov & Rick Perley

regular self-cal

full stokes primary beam correction (no more JVLA beam squint)

Phased array feed calibration

- 50 deg² with 2 pointings down to 0.5 mJy/beam with ASKAP/BETA
- fully automated MeqTrees pipeline employing differential gains
- ~2200 sources detected above 5σ

credit: Ian Heywood

Direction-dependent gains for accurate bright source subtraction

- X-band JVLA observation of the WHT deep field
- bright source (4C +00.02, the phase calibrator) near the first primary ightarrowbeam null
- impossible to calibrate without MeqTrees differential gain solutions and accurate source subtraction.

JVLA Stokes I beam

CASSBEAM software, Walter Brisken, NRAO

Heywood et al., MNRAS, 428, 935, 2013

Antenna pointing error solutions

- subset of antennas in the WSRT deliberately mispointed (shown in blue)
- MeqTrees was able to determine to reasonable accuracy the precise offsets from the intended pointing (shown in red)
- resulting pointing offset solutions (as a function of time) revealed a regular pointing 'wobble' on some antennas that was not previously known

- MeqTrees is focussed on "niche" problems
- pushing interferometers to their limits by parameterising very subtle effects and solving for them
- recently made a big push towards Bayesian methods
- **KEY POINT:** parameters can (and should!) be a combination of source and instrument if this impacts the inferences that are made

simulating (and solving for) these effects is all in place for connected element, cm-wave radio interferometry

all that we need to do is tailor it to mm-VLBI

Meq Silhouette

robust, repeatable measurements

joint fitting of instrumental and science parameters

in the visibility domain

interferometric simulations

Richard Feynman's dictum

"What I cannot create I do not understand"

Richard Feynman's dictum:

"What I cannot create I do not understand"

"If you can simulate it, you can solve for it"

— Oleg Smirnov

an end2end simulator

- form your measurement equations (python script, GUI, html interface)
- **inputs:** GR-MHD images, point srcs, etc. (full Stokes)
- **add corruptions** of choice (gain errors, polarization leakage, tropospheric model, pointing error, etc.)
- **simulate and image** (with a range of imaging algorithms)s
- automated metrics (e.g. polarization ratios, Radon transform, etc.)
- parameter estimation (MCMC and Bayesian model selection)

Monika's GR-MHD simulation jet at inclination = 30 deg; RA,Dec = M87

stations: SMA, LMT, CARMA, SMT, Pico Veleta, PdBI, ALMA, GLT 12 hour track, elevation > 15 degrees

Monika's GR-MHD simulation jet at inclination = 90; RA,Dec = M87

stations: SMA, LMT, CARMA, SMT, Pico Veleta, PdBI, ALMA, GLT 12 hour track, elevation > 15 degrees ...just add water corruptions

troposphere

- lots of work in MeqTrees on this for ionosphere (by Ilse, Pimm to continue(?))
- must be physical
- easily understand your risks (if *N* stations not participating due to weather)
- we have a lot of information on the sites already (and can envision each site having PWV radiometers in the future)

pointing errors

- seems more of problem than I originally thought
- substantial fractions of primary beam
- can calibrate out in station-dependent complex gains, but then there is dynamic pointing error

further effects

- intrinsic source variability
- ISM scattering

a point-and-click end-2-end simulator

RODRIGUES

RATT Online Deconvolved Radio Image Generation Using Esoteric Software

> created by: Sphesihle Makhathini Gijs Molenaar Oleg Smirnov

RODRIGUES

- browser-based, pipeline running on backend of GCE or HPC centre in Cape Town
- parametrised, platform independent scheduler
- Can be deployed on a laptop, cluster, cloud (Google Compute Engine, Amazon Web Services)
- Offers a standardised framework for comparing data reduction techniques (calibration, imaging, source finding, etc.)

Create new simulation

Observatory	LWIMAGER deconvolution settings	CASA deconvolution settings
Name New simulation	Deconvolve with me!	Deconvolve with me!
Observator V MeerKAT		NITER 1000
SEFD JVLA-A		Loop Gain 0,1
System detaults will be used if left blank	Loop gain 0,1	Clean Loop gain
Output type Visibilities \$	Clean Threshold 0	Threshold 0
	Clean sigma level	Clean sigma level 0
	In sigma above noise	In sigma above hoise
Sky Model	Clean algorithm csclean	PSF mode clark \$
	Scales for MS 4	Imager mode csclean 🛊
Sky type	clean	Grid mode widefield \$
Sky Choose File No file chosen	Clean scales	A-projection only works JVLA
KATALOG n		ASA clean task
Ch		
Radius 0,5	1 available	for
Rad		
Flux 0.0 range Flui		Volution scales in
Add noise	Cilhauat	40
		ASA clean task
noise std Ger		
		ASA clean task
	me!	Restoring beam
Observation setup	NITER 1000	Cycle factor 1,5
	Minor loop gain 0,1	Cycle speed up -1
Synthesis time 0,25	Major loop gain 0,9	
in hours	Clean Threshold 0	
Integration time	In Jy	MORESANE deconvolution settings
in seconds	Clean sigma 0	
in MHz	level In sigma above noise	Deconvolve with me!
Channel width 50000 0	Join 🗌	Scale count
in kHz	polarizations	See MORESANE help
Channola	Join channels	Start scale 1

Create new simulation

Observatory				
Name	New simulation			
SMT				
CARMA				
LMT				
ALMA				
PV				
PdBI				
Hawaii				
GLT	 Choose antennae set for observation 			

Observation setup

obslength time	0,25
	in hours
Integration time	10
	in seconds
Start frequency	230
	in GHz
Channel width	4
	in GHz
Channels	1
	Number of frequency
	channels
lower elevation	10
flag	degrees
Start Time	2009/04/06/12:20:00.00

Noise	
Add noise	✓ defaults taken from Lu. et al 201?
SMT	11900
CARMA	3500
LMT	560
ALMA	110
PV	2900
PdBI	1600
Hawaii	4900
GLT	7300

ISM scattering gaussian

Ismscatter	
major axis	1,309 mas/cm^2
minor axis	0,64 mas/cm^2
rotation angle	78 degrees East of North

Submit simulation

imaging settings

Image size	128 in pixels (default is input image size)
Pixel size	1 in micro arcseconds (default is input pixel size)
UV weight	uniform
robust	0
Clean operation	clark 🜲
Number of iterations	0 for a dirty image set this to zero
Loop Gain	0,1
Clean Threshold	0
STOKES	1

Sky Model

fitsfile Choose File No file chosen

if blank a default image will be chosen

Visibility outputs	
Export Measurement Set <a>	
Export UV FITS	

pipelined output:

R.O.D.R.I.G.	.U.E.S. List jobs Create job		logged in as deane	Log out
	Results for job #8 (defaults-test)			
	Job properties			
	 status: FINISHED start: April 16, 2015, 3:13 p.m. finished: April 16, 2015, 3:15 p.m. duration: 0:01:26.051622 docker_image: skasa/simulator results_dir: 8-qqysnq9y 	Reschedule Refresh Delete		

Result files				
name	type	size	modified	actions
input/parameters.json	ASCII text, with very long lines, with no line terminators	2.2 KB	Thu Apr 16 15:13:57 2015	view download
output/log-ska1sims.txt	ASCII text	5.8 KB	Thu Apr 16 15:14:10 2015	view download
output/results-psf.fits	FITS image data, 32-bit, floating point, single precision	16.0 MB	Thu Apr 16 15:15:22 2015	view download
output/results-dirty.fits	FITS image data, 32-bit, floating point, single precision	16.0 MB	Thu Apr 16 15:15:17 2015	view download
output/results-uvcov.png	PNG image data, 1500 x 1500, 8-bit/color RGBA, non- interl	178.0 KB	Thu Apr 16 15:14:11 2015	view download
output/plots-smakh1429190037.661782/log- smakh1429190037.661782.txt	ASCII text, with very long lines	12.4 KB	Thu Apr 16 15:15:22 2015	view download

pipelined output:

Console output	
running #!/bin/bash -ve	
if [-z "\$1"]; then DATA=/	

0100

Bayesian Inference / Parameter Estimation

the problem with MCMC methods in interferometry

mm-VLBI (Bayesian) advantages

- relatively few stations
- required FoV is very small
- low dynamic range, not much cleaning (if needed)
- no clear direction-dependent effects

= rapid simulate-imagelikelihood compute cycle time

an example:

- simultaneously solve for pointing error and source flux
- covariance matrix with both instrumental and source parameters

Lochner+2015

jointly solved flux densities and pointing errors

Lochner+2015

model selection

that includes calibration systematics

Scattering at 230 GHz

0

0.33 Orbital Phase

0.67

Doeleman+2009

...but not just post-processing and parameter estimation

- plenty of priors available:
 - typical weather patterns
 - PWV measurements
 - typical pointing accuracy rms

future advantages

- MeqTrees development is "complete" (~10 years development by Oleg Smirnov and others)
- Now the focus is on simulation (and calibration) pipelines; as well as Bayesian techniques
- Large team, primarily focussed on MeerKAT, HERA/PAPER, SKA1
- MeqSilhouette will benefit directly from any development in MeqTrees (e.g. RODRIGUES, GPU acceleration, imaging algorithms)

so watch this space, but

COMMENTS / REQUESTS / SUGGESTIONS

would be most welcome at this point

more information

http://meqtrees.net

https://github.com/ska-sa/meqtrees