A Bayesian Algorithm & Dataset for mm-VLBI Image Reconstruction

Katie Bouman

Likelihood

Prior

Related Work

CLEAN

- Not Bayesian
 - Difficult to Adapt

Optical Interferometry

Bispectrum-MEM

Overview

Van Cittert-Zernike Theorem

TrraditioRephesegretaRieppr.e9ettaaPoulse

Image Representation: Rectangle Pulse

Image Representation: Triangle Pulse

Comparing Image Pulses

Approximate Van Cittert-Zernike Theorem: 1D

Approximate Van Cittert-Zernike Theorem: 2D

Works for Any Pulse With a Closed-Form Fourier Transform

Overview

Some images adapted from slides by Daniel Zoran

Natural Image Prior

Given an NxN matrix X return P(X) - "Probability that X is a natural image"

An unlikely image A more likely image A likely image

Natural Patch Prior

Natural Patches

Modeling the Patches

Samples from Natural Patch Model

Celestial Images

Samples from Celestial Patch Model

Ð		1	18	1		ł.	3	2	٥,	k	83		4	4	ŝ	8		b),	N	1	5		E.	8	1	Ċ.		al.	2		5	8
 Samp 	99	đ	e	8	ē.	1	R	ę.	e:	18		ŝ	ß	9	D	ų.	đ	8	14	28	24		8	张	2	2	2	2	8	8	12) 	15
	邂	i.J		n	8	1	滑	ыł	8				ЗË	n,	į.	23	(Q	¥.	52	8		3	ł,	1	ŝ	1	8	1	2	8		R
		2	19	1	2	÷.	2	26	,	u)	譅	20	į.	6	5	28	8	8	ę.	橋	8	8	2	ðs			÷۲		Ø	8	8	i.
	1	8	3	2	29	2	10	s.	1	3		J.	ſű		£	8	P	22	ŝ.	ş	3	2	8	<u>9</u> 2	8	99	2	2	22	14	1	ų,
	5		e.		83	3	33		18	2		ii)	叔	12	8		5	8	0	-	22		86	8	3	6			Ċ,	Ċ,		8
		ş		C	2	8	13	24	(B	2		¢.	部	Ľ.	6		69	e	N.	ic.	P.	35	黯		¥,	1	8	1	8	8	B (
	頾	ġ,	2	K	8	72	R.	1	13				20	ŝ	Q.		J.	1	8	N	di.	×.	æ	93	8	2	胞	2	2	i.		8
	85	8	×.	8		1	驟	4	28	3	5	E.	8	×.	E		96	12	ŝ	3	e.	i.		8	đ,	1	53	6	3	Q.	1	8
	88	8	8	Q		1	5.0	2	al.	18	K.		15	12	8	ŝ	2	57	a.	Č2	ø	4	8	12	P.	S.	82	2	R	ų,	8 (÷,
																										\rightarrow	6	'C	lus	te	r"	

Black Hole Images

Images courtesy of Avery Brodrick

Samples from Black Hole Patch Model

Optimization

Expected Log Likelihood - EPLL

"Half-Quadratic Splitting"

Results – Synthetic Data

	CLEAN	SQUEEZE	BSMEM	CHIRP
3.0 Flux				
1.0 Flux			3	
0.5 Flux				

Since these images were generated, we have found better parameters to use in SQUEEZE

Results – Real Data

VLBI Dataset Website

VLBI Reconstruction Dataset

A Dataset Designed to Train and Test Very Long Baseline Interferometry Image Reconstruction Algorithms

HOME	FAQ	TRAINING DATA	REAL DATA	TEST DATA	SCOREBOARD	RESULT GALLERY	GENERATE YOUR DAT

Welcome to the VLBI Reconstruction Dataset!

The goal of this website is to provide a testbed for developing new VLBI reconstruction algorithms. By supplying a large set of easy to understand training and testing data, we hope to make the problem more accessible to those less familiar with the VLBI field. Specifically, this website contains a:

- Large set of synthetic training data for many different VLBI arrays and targets
- · Set of real data measurements provided in the same standard format
- <u>Standardized data set</u> for testing VLBI Image Reconstruction Algorithms
- Online quantitative evaluation of algorithm performance on simulated testing data
- · Qualitative comparison of algorithm performance on the reconstruction of real data
- Online form to easily simulate realistic data using your own image and telescope parameters

vlbiimaging.csail.mit.edu

Questions?

Katie Bouman

Daniel Zoran

Bill Freeman

Michael Johnson

Andrew Chael

Vincent Fish

Sheperd Doeleman

Approximate Continuous Image: 1D

Approximate Van Cittert-Zernike Theorem: 1D

of image X

Atmospheric Noise and Closure Phase

$$\begin{split} &\omega \tau_{1,2} + \phi_1 - \phi_2 : \text{Telescopes 1 x 2} \\ &\omega \tau_{2,3} + \phi_2 - \phi_3 : \text{Telescopes 2 x 3} \\ &+ \omega \tau_{3,1} + \phi_3 - \phi_1 : \text{Telescopes 3 x 1} \\ \hline &\omega \tau_{1,2} + \omega \tau_{2,3} + \omega \tau_{3,1} \end{split}$$

Overview

Image Reconstruction Algorithm

Likelihood "Data Term"

Image Representation

Bispectrum Energy

Prior "Previous Expectations Term"

Training a Patch Prior

Reconstructing with a Patch Prior

Overview

Image Reconstruction Algorithm

Likelihood "Data Term"

Image Representation

Bispectrum Energy

Prior "Previous Expectations Term"

Training a Patch Prior

Reconstructing with a Patch Prior

Training Image

A Simple Prior Learned from Training Data

Noisy image we wish to restore using our patch prior

Non-Overlapping Patches

Overlapping Patches - Patch Averaging

We want every patch in the output to be likely

Expected Patch Log Likelihood - EPLL We propose the EPLL cost function:

EPLL is NOT P(x)

 $f_p(\mathbf{x}|\mathbf{y}) = \frac{\lambda}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2 - \sum_{i}^{j} \log p(\mathbf{P}_i \mathbf{x})$

Optimization

We use "half-quadratic splitting" Introduce a set of auxiliary variables **Z** Solve the following optimization problem:

$$c_{p,\beta}(\mathbf{x}, \mathbf{Z}|\mathbf{y}) = \frac{\lambda}{2} ||\mathbf{A}\mathbf{x} - \mathbf{y}||^2 +$$