

Progress towards a metrological fiber wide-area network

A. Amy-Klein, P.E. Pottie

Laboratoire de Physique des Lasers, Université Paris 13, CNRS, France LNE-SYRTE, Observatoire de Paris, UPMC, CNRS, France

Optical link team

Laboratoire de Physique des Lasers

Olivier Lopez Anne Amy-Klein Christian Chardonnet Nicolas Quintin Nicola Chiodo Fabrice Wiotte Anthony Bercy Fabio Stefani

Renater

Emilie Camisard Thierry Bono Laurent Gydé

Systèmes de Référence Temps-Espace

LNE-SYRTE

Paul-Eric Pottie Giorgio Santarelli* Won Kyu Lee** Amal Kanj Daniele Rovera Joseph Achkar

* now at LP2N, Bordeaux**visitor from Kriss, Korea

Outline

I. Ultrastable fiber link

- Principle
- Internet fiber link
- Cascaded link
- II. Current developments
 - 1100-km cascaded link
 - Multi-user dissemination
 - Time transfer

The challenge of ultrastable frequency dissemination

Simplified scheme of an optical fiber link

- Fluctuation of the propagation delay
- Round-trip » method for noise compensation
- Propagation delay limits noise rejection bandwidth and amplitude

 Demonstration with 2 parallel fibers or one loop fiber : two ends at the same place

Strategy for a continental network

- Use public telecommunication fiber networks
 - Dense Wavelength-Division Multiplexing (DWDM)
 - Digital data \rightarrow Simultaneous transmission Ultra-stable frequency signal \rightarrow On \neq lambdas (or channels)
 - -> Dark channel instead of dark fiber !
- Collaboration with RENATER : the French National Research and Education Network
- OADM (optical add drop multiplexer) to add and extract signal
 - Commercial components (100 GHz filters)
 - Losses < 1dB, Isolation > 25 dB
 - Bidirectional

ultra-stable fy data

Typical scheme of a multiplex optical link

Key issue: bidirectional continuous propagation (for noise correction)

OADM and EDFA modules in Condé

Long distance optical link

- Multi-segments approach :
 - Link is divided into a few segments, depending on noise and losses
 - \rightarrow shorter propagation delay
 - \rightarrow larger bandwidth and better noise rejection
- Repeater stations are needed
 - Repeater station N : send back signal to station N-1, amplify and filter, correct the noise of next link N

- Automated with remote control (IP)
- Polarization control
- No stable RF clock required

12/11/2014

- •Noise clean-up (optical regeneration)
- Retrace back signal to station N-1
- •Correct Link N+1 noise

O. Lopez et al. Optics Express (2012)

Rgeneration station

Dimensions : 4U 19" x 350mm Power < 100 W

Ongoing development: metrological fiber network in France and Europe

In France Refimeve+ Remif (IdF) PI: C. Chardonnet

In Europe : NEAT-FT Funded 2012 PI: H. Schnatz (PTB) See previous talk

Cascaded 1100-km LPL-Nancy-LPL link

- 4 cascaded links with 2 end stations and 3 regeneration stations
- US signal: 1542,14 nm (ITU 44) /Data: 1542.94 + 1543.73 nm (ITU 43 & 42)
- 32 OADMs + 12 bidirectional EDFAs

End-to-end phase variation

Delay variation, femtoseconds

End-to-end stability

LPL-Nancy-LPL compensated link - 1100-km

Multi-user dissemination

- Several labs spread in the same metropolitan area
 - For instance Paris
- Multi user Network architecture
 - Point-to-point distribution is fibers consuming
 - In-line extraction enables flexible distribution
 - First proposed by G. Grosche (PTB, Germany), in 2010

Extraction stability on a 86+6 km urban link

A. Bercy et al. JOSA B (2013)

Two-way time transfer through optical fiber

- Two-way time transfer demonstrated simultaneously with frequency transfer on the 540km public fiber link
- The time signal is encoded using pseudo random noise modulation with Satre modems used for satellite time transfer

Time delay measurement on 540-km fiber link

Time transfer accuracy and stability

- Delay calibration < 50 ps
 - Sensitivity to link length, power, polarisation, dispersion....

	Fiber time transfer	GPS carrier- phase	Two-way satellite time & fy transfer
Accuracy	~200 ps	~300ps	~500ps
Stability (1 day)	~20 ps	~100ps	~50 ps

O. Lopez et al. Applied Physics B (2013)

Summary and outlook

- Optical links are now mature
 - Paris-Nancy-Paris 1100 km non-dedicated fibers
 - Braunschweig-Munchen-Braunschweig 1840 km dedicated fibers
 - In progress : in-line extraction, fiber network development
- Perspective
 - Remote clock comparison, search for fundamental constants variation, relativistic geodesy...
 - Fundamental limits / Sagnac effect
 - Test of satellite links (ACES MW, Two-Way or advanced GPS)
 - Applications to high-resolution spectroscopy...

LPL-Reims-LPL 540-km stability

540-km end-to-end propagation delay

Phase, Femtoseconds

Simulation of Paris-Strasbourg-Paris 740km

Time transfer reproducibility

- Systematics effects can be controlled to less than 50 ps
 - Delay calibration < 50 ps, power sensitivity < 15 ps/dB, fiber chromatic dispersion < 25 ps, polarisation mode dispersion < 50 ps
- But scarce phase jumps of ~100 ps
- Room for a lot of improvment !

	Fiber time transfer	GPS carrier- phase	Two-way satellite time & fy transfer	T2L2 Time Tr. by Laser Link
Accuracy	~250 ps	<3 ns	1 ns	~300 ps
Stability (1 day)	~20 ps	0.1 ns	40 ps	<10 ps (10-100 s et 1-10 d)

State of the art

- JILA-NIST (USA) optical carrier phase and frequency comb transfer
- SYRTE LPL (Fr) 1100 km optical carrier phase
- PTB-MPQ-Hannover (Germany) 1840 km optical carrier phase
- NICT, NMIJ, UT (Japan) 120-km optical carrier phase
- JPL (USA) microwave optical link
- NPL (UK) frequency comb, optical carrier phase
- NIM, SIOM Shangai (China) microwave optical link
- INRIM, LENS (Italy) 670-km optical carrier phase
- UWA,NMI (Australia) optical carrier phase & microwave
- AGH (Poland) microwave time transfer

. . . .

Paris Metropolitan Area Network

8 research labs

Optical link set-up

Autonomous lock (microcontroller), no stable RF clock at remote end, optical regeneration (PLL), automatic polarisation controller,