
JIVE Uniboard Correlator Memo 2: On scaling
delays

Des Small

September 11, 2012

1 Introduction

A crucial part of VLBI is the a priori estimation of geometric and atmospheric delays
between antennas. In the JCCS system that is used to run the Mark 4 hardware corre-
lator and the SFXC software correlator, these delays are calculated using the program
CALC[1], and it is intended that the Jive Uniboard Correlator should follow their exam-
ple.

In the course of implementing the support for model generation and distribution
in the correlator control system it emerged that there were some places in which the
coverage of delay and phase models in the EVN Correlator Design document[12] were
unclear or under-specified.

The purpose of this document is to fill in all gaps in the Jive Uniboard Correlator
(JUC) team’s understanding of delay models and their implementation. In the process,
I have consulted documentation from theMark 4 andSFXCcorrelators and spokenwith
Bob Campbell, Sergei Pogrebenko (designer of the software correlator that was later
the basis for SFXC), and Mark Kettenis and Aard Keimpema of the SFXC team. I am
grateful for their assistance and patience. Any remaining misunderstandings are my
own fault, however, and I’d be glad to hear about them.

2 Off-board handling of delay and phase models

The original plan for treatment of delay and phase models in the EVN Uniboard-based
correlator was to stay as close as possible to the SFXC software correlator.

The software correlator SFXC uses CALC to calculate delays on a grid on times at
1 s intervals. The delays are then calculated as needed using third-order Akima splines
to interpolate to times off this grid.

With this treatment, Aard Keimpema assures me that the delays are identical to
thoseof themodel itself down tomachineprecisionwithdouble-precisionfloatingpoint.
There is no need to calculate phase delays separately, since the time delays can bemulti-
plied by frequencies with double-precision floating point accuracy inside the correlator.

Essentially all the differences in delay model handling between SFXC and the JUC
arise from the constraint that the latter does not have floating-point arithmetic. Instead
we use fixed-point arithmetic (and corresponding registers), and this means that we
have to be a lot more careful about the possibility of numerical under- and overflow.
In particular, the need to have separate registers for the phase delay arises because the

1



delay coefficients are not stored with enough precision to allow the phase delay to be
calculated on board the correlator.

The original intent for the JUC control system was to emulate the SFXC approach
as closely as possible. The JUC uses quadratic polynomials with fixed-point coefficients
to approximate time and phase delays over 1

32 s intervals.

• Evaluate CALC at 1 s intervals to provide coarse-grid values;

• Interpolate onto 1
32 s intervals using Akima splines (fine-grid values);

• Calculate floating point coefficients for quadratic time delay polynomials from
successive sets of three fine grid points

• Calculate floating point coefficients for phase polynomials from time delay co-
effients

• Discretize time and phase delay polynomial coefficients and send them to the cor-
relator

The plan was that staying close to SFXC’s methodology would mean we wouldn’t
have to reinvent any wheels. However, it turns out that things aren’t quite so simple.

Özdemir[2] showed that Akima’s method can interpolate model delays to machine
precision (for doubles, around 10−16) using a relatively coarse (1 s) grid onwhich linear
and cubic interpolation have worst-case accuracy of only about 10−15.

However, this effectively solves the problem of “which interpolation method is as
good as evaluating CALC for each sample, given that we are using double precision?”
Note that 10−15 corresponds to 2−50 so calculating to this accuracy requires 50 bits af-
ter the binary point, which is larger than any of the registers discussed in this document.

This is therefore not quite the question we need to answer here. We need to find a
treatment of the model that is “good enough” given much more modest resources.

In particular, we do not have any form of floating point. This is the reason that the
phasemodels for theUniboard correlatorhave tobe calculatedoff-board - the integer/fixed-
point value of the delay doesn’t have enough resolution to scale up for the phase delays.

3 JUC design criteria

The architecture of the correlator is designed around Delay registers using fixed binary
point, with the integer part used to shift an entire FFT block at once based on the time
of (say) the centre sample of the block (rather than individual samples). Pogrebenko
argues that shifting the FFT block makes the quadratic component of the delay model
more critical, although I cannot currently see why.

The four most-significant bits after the binary point in delay model are used as an
index into a lookup table containing phase corrections to apply to the samples. (As the
Design Document[12] clearly states on p.20). What had not previously been clear to
me, however, is that it is envisaged that the delay registers would have considerably
more bits after the binary point than this, in order to avoid degrading accuracy by un-
derflowing small values. (The Design Document doesn’t seem to say where the binary
point should be placed.)

As we shall see, it is not practical to have all of

• 32-bit delay registers;

2



• The ability to handle “worst-case” space VLBI;

• Enough fractional bits to avoid underflow; and

• The same number of fractional bits for delay, delay rate and delay acceleration
registers

The last requirement is apparently not that firm, andwewill certainly want to violate
it.

Theuseof the fourmost significant bits of the fractional delay for thephase-correction
lookup is driven by the fact that the phase-correction vector is discretized at a compa-
rable precision.

Clearly, all of the phase registers are after the binary point. The choice of a 48-bit
phase register was made so that phase rate is resolved to a precision of 0.01 samples/s
over a full 24-hourobservation. (32×106 ticks/s×(24×60×60) s×2−48 ticks/tick2s× ≈
0.01tickstick).

4 Space constraints

The worst case space delay and delay rates are those associated with the Radio Astron
space telescope; these are 2 s (according to Sergei Pogrebenko) and 50 µs/s (according
to Dmitry Duev).

A2 s delay corresponds to 64×1032 ticks, which takes up26bits of the delay register
for the integer delay, leaving 6 bits for the fractional part. This isn’t a lot of scope to
handle underflow, and certainly isn’t adequate to handle the delay rate with the same
fixed point placement (see Equation 2 below).

In Section 5.3 Hargreaves raises the possibility of using different scales for delay
itself and delay rate, which would solve this problem.

A 50 µs/s delay rate corresponds to 1600 ticks, or 11 bits. This is also not compat-
ible with Hargreaves’ proposal to use effectively 28 bits of the 32-bit delay rate register
after the binary point.

In short, if theworst-case space requirements really are this bad, and I haven’tmade
amistake with the calculations, then it is not practical to use the proposed register sizes
for space applications.

5 Terrestrial Delays

5.1 A priori calculations

We are going to use quadratic polynomials to approximate station delays relative to the
centre of the earth. In order to get bounds for the coefficients of the polynomials we
consider a Taylor’s series expansion of the diurnal delay due to rotation of the earth.

cdelay0 =delay =
R

c
cosΩt (1a)

cdelay1 =
d

dt
delay = −R

c
Ω sinΩt (1b)

cdelay2 =
1

2

d2

dt2
delay= −1

2

R

c
Ω2 cosΩt (1c)

3



Plugging in the numbers (Ω = 2π/(24 × 60 × 60) = 7.3 × 10−5radians/s, R =
6.4× 106m) we get values for the coefficients (in second-based units) of

cdelay0 ≈ 0.02 s (2a)

cdelay1 ≈ 1.6× 10−6 s/s (2b)

cdelay2 ≈ 5.6× 10−11 s/s2. (2c)

Suppose we want to calculate the derivatives in delay and t but evaluate the polyno-
mial in variables Delay and T , with scaling Delay = Ldelay and T = Mt. We get

Delay = L delay(t0) +
L

M

d

dt
delay(t0)δT +

1

2

L

M2

d2

dt2
delay(t0)δT 2 (3)

The Uniboard-based correlator uses an internal unit of ticks for time, based on the
32MHz sample rate, and the delay input is given in units of ticks. If the output is also
on this scale we have L = M = 3.2× 107ticks/s. Scaling the coefficients cdelay to tick
units we get new coefficientsCdelay, with values

Cdelay
0 = L delay ≈ 6.4× 105 ticks (4a)

Cdelay
1 =

L

M

d

dt
delay ≈ 1.6× 10−6 ticks/tick (4b)

Cdelay
2 =

1

2

L

M2

d2

dt2
delay ≈ 1.8× 10−18 ticks/tick2 (4c)

Thequadratic coefficientCdelay
2 is very small; it corresponds to2−58.9, so that at least

59 places after the fixed binary point would be needed to store it. And the JUC uses only
the four most significant bits of the fractional delay (in ticks) to calculate the fractional
delay correction, so that the quadratic term becomes relevant at a time tquad given by

1.8× 10−18 ticks · t2quad = 2−4 ticks, (5)

which works out at 5.8 s.
The quadratic term, then, is impractical to store and of no practical use. There is no

reason to include it in our time delay model.

5.2 Comparison with Mark 4 correlator

TheMark 4 hardware correlator designed in the 1990s and commissioned in 1998 faced
essentially the same issues of model generation as the EVN uniboard-based correlator
faces now. Indeed, the CALC program used to calculate the model is a common feature
of both as well as of SFXC.

The Mk4 correlator relies on station units (SUs) to keep the data streams synchro-
nised to the nearest sample, so the 32-bit delay register only handles fractional delays of
±0.5 samples. The 18-bit delay rate register used to increment the 18 least significant
bits of the delay register. This is effectively a hardware optimisation of a 32-bit register
with themost-significant bits zeroed off on the grounds that they will not be needed. As
Whitney remarks in Mark 4 Memo 131 [5]:

The maximum delay-rate supported by the 18-bit delay rate register is
1 delay-shift per 232−18 = 16384 samples, which corresponds to ≈ 60
microsec/sec and is quite adequate for even worst-case space VLBI.

4



Thiswould also accommodate the anticipatedworst-case scenario forRadioAstron.
What is also clear is that the Mk4 correlator’s delay resolution of 32 bits for just the
fractional part of the delay is considerably better than is currently specified for the EVN
uniboard-based correlator.

Finally, we note that there is no delay acceleration register on theMark 4 correlator.

5.3 Possible adjustment to Uniboard correlator

In response to a previous draft of this document, JonathanHargreaves proposed chang-
ing the delay registers from integer values to fixed-point with 8 bits after the binary
point, and additionally scaling the delay-rate up by a “binarymillion” (220 or 1048576).
As he says[11] of this case:

If we represent your worst case numbers as 32-bit hexadecimals with
two digits after the point we get for the constant coefficient Equations 2
0x09c400.00 and then we scale the linear coefficient up by a binary million
(ie 220 not 1000000) we get 0x000001.ad

We saw above that the Mark 4 correlator can manipulate delays at a resolution of
2−32 samples; this proposal only resolves down to 2−8 for the main delay register. But
this corresponds to 1

32×106 · 1
28 s = 1.22 × 10−10 s, and it is generally understood that

delay resolution of less than a nanosecond is good enough for VLBI.

5.4 Recommendations for delay model

I recommend incorporating Hargreave’s fixed-point model for delay, with linear coeffi-
cient scaled up by 20 bits, and discarding the quadratic term for delay.

6 Phase

6.1 JUC requirements

How accurate does the phase model need to be? Hargreaves and Verkouter[12] (p. 20)
say that the 9 most-significant bits of the phase model are added to the phase input.

6.2 Comparison with SFXC

SFXC uses floating point arithmetic for fringe phase correction, which it calculates in-
ternally based on the model delay. The model is therefore a third-order Akima spline
over an interval of 1 s interval. Since SFXC works, we know that this is at least good
enough, but the possibility remains that it is overspecified.

6.3 Comparison with Mark III correlator

The original plan for the Mark 4 correlator was to use a system “basically identical”[4]
to that of theMark III correlator: phase delay andphase-ratewould both be stored in 32-
bit registers, and the phase would be incremented by the value of the phase-rate register
at every sample. The phase rate and the initial phase would be loaded at the beginning
of each integration period of 20,000 samples. With a 32 MHz sample rate, this implies
a model duration of 1/1600 s..

5



Whitney states[4] that this linear scheme “is quite acceptable for all anticipated
ranges of phase-rate and phase-acceleration, including even the worst-case space VLBI
scenario”.

6.4 Comparison with Mark 4 correlator

TheMark 4 correlator subsequently adopted a scheme with phase corrections modeled
by second-order polynomials over a longer interval. Whitney writes[4] that the primary
motivation for this was “to allow significant lengthening of the basic chip integration
period, with a corresponding reduction in the DSP horsepower necessary to support
the chip”.

The software for Mark5B data recorder includes a support for emulation of a Mark
4 SU; the code is the same as that in the SU itself (according to Bob Eldering). The SU
gets the model as a quintic polynomial valid for 2 minutes; it then interpolates down to
quadratic polynomials each valid for a single correlator frame, as with the delay model.
The conversion to a quadratic with floating point coefficients (q0, q1, q2) is followed by
a discretision step that converts the coefficients into integer values (ϕd,0, ϕd,1, ϕd,2) for
three 32-bit registers. All the subtleties occur in this last step; AlanWhitney’s document
[4] is indispensible in understanding the implementation.

Since the phase is stored in units of periods it wraps at 1, and the resolution is there-
fore 1

232 periods.
The phase register is updated every k Mark 4 system clicks (“sysclicks”) by incre-

menting itwith the contents of thephase-rate register; the phase-rate register is updated
every n sysclicks, by incrementing it with the value of the phase-acceleration register.

The SU code includes the following definitions for the coefficients of the phase poly-
nomial:

ϕd,0 = 232frac(q0) +
1

4
delay[0]

fsb
fos

(6)

ϕd,1 = 232
(

k

fsys
q1 +

nk

f2
sys

q2
2

)
+ k

1

4
delay[1]

fsb
fos

(7)

ϕd,2 = 232
nk

f2
sys

q2 (8)

where the first two coefficients include a correction for oversampling (fos) and frac-
tional bit correction, depending on the net sideband (fsb = ±1); these are described in
[9]. fsys is simply the time conversion rate of sysclicks/s.

The ϕd,1 term is the most surprising. Alan Whitney explains[4] that “The second
contribution to phase error is due to unmodelled phase-acceleration over the n samples

over which the phase-rate is held constant. This is simply given by ϕ = 1
2a

(
n
f

)2

.”
(Where a is the value of phase-acceleration over the interval.) Whitney’s correction
factor is for phase; the code adds a term to the phase-rate which is used to increment
the phase value itself, so that the correction is added linearly. The correction is of course
rescaled by k/n to accommodate the different update rates of the two registers.

An important point tonote is that the secondorder coefficient in thephase correlator
is not that important in the Mark 4 correlator: Bob Campbell tells me that it was in fact
zeroed out in Albert Bos’s code, with no noticeable ill effects.

Roger Cappallo [3] remarked in 2003 – five years after the Mark 4 correlator was
commissioned – that “the old model chose values of n so small that for many baselines

6



the appropriate value of the acceleration register was less than 0.5, and was rounded
down to zero.” The algorithm was then changed to reduce round-off errors, with the
result that “n is typically a 4 or 5 digit number”.

This is for a correlator frame that is “nominally 500 ms” long, so approximately
1010 systicks long. But the EVN Mark 4 correlator, as mentioned above, does without
it altogether.

6.5 A priori calculation

Checking the JIVE experiment database for all experiments since its introduction, we
find a frequency range from 312MHz up to 22,392.49 MHz.

Scaling Equations 2 by these frequencies in units of system ticks, and using ϕ for
phase we have

1.5× 10−5 ticks−1 <
d

dt
ϕ < 1.1× 10−3 ticks−1 (9a)

3.4× 10−17 ticks−2 <
d2

dt2
ϕ < 2.5× 10−15 ticks−2 (9b)

With a 48-bit register all of which is used for the fractional part we can store values
down to 1

248 = 3.6×10−15, with the result that we can store dϕ
dt coefficients unchanged,

but that d2ϕ
dt2 coefficients underflow even a 48-bit register.

Ifwe reallywant to keep the second-order term in thepolynomial andhave it be used,
we would again have to resort to a kind of fixed point arithmetic in the spirit of theMark
4 correlator’s parameter n.

Over a time range of 1 × 106 ticks, the value of d2ϕ
dt2 ranges from 3.4 × 10−5 to

2.5× 10−3, which is less than the minimum precision required of 2−9 ≈ 2× 10−3.

6.6 Discussion and tentative conclusions on phase

After contemplating the Mark 4 correlator algorithms, it is good to remind ourselves
that SFXC simply evaluates a cubicAkima spline for themodel for every sample. Simply
not having the equivalent of the Mark 4 correlator’s k and n parameters should elimi-
nate most of the quirks of the Mark 4 system.

However, the increase in register size for phase polynomial coefficients from 32 to
48 bits apparently isn’t enough to compensate for the loss of k and n.

Given that the EVN Mark 4 correlator has in practice ignored the quadratic phase
correction formuch if not all of its working life, I would be inclined to recommend using
a linear phase correction model for the EVN uniboard-based correlator over its origi-
nally specified 1

32 second interval.

7 Conclusions

It seems that both the delay and phase models can actually be handled by linear inter-
polation over the original time-range of 1

32 s.
For delay, fixed point arithmetic should be used, with 8 bits after the point, and the

delay rate should be scaled up by 220. For phase calculations, the registers are already
fixed point with all the digits after the point, so no such adjustments are necessary.

7



But all these calculations should be reviewed carefully before they are committed to
FPGA. All the calculations are available in a spreadsheet that accompanies this docu-
ment.

Since this document was first written, the question has been studied further in JIVE
Uniboard Memo 6, and it has been concluded that in fact the JUC could refresh its co-
efficients only once a second, and that the phase polynomial should be linear (at least
for terrestrial applications) and the coefficients stored in 48-bit registers. Consult that
document for further details.

References

[1] http://gemini.gsfc.nasa.gov/solve/

[2] HüseyinÖzdemirComparison of linear, cubic spline andakima interpolationmeth-
ods August 30, 2007

[3] Roger Cappallo Recently DiscoveredModel Problems in theMark 4 Correlator

[4] Alan R Whitney Mark 4 Memo 101: Addition of acceleration to Mark 4 on-chip
phase-rotator 27 October, 1992

[5] AlanRWhitneyMark4Memo123: Implementation ofDelay/PhaseTracking in the
Mark 4 correlator 20 November, 1992.

[6] B. Anderson Mark 4 Memo 141: Straw Man SU Design (Revision C 930302)
http://www.haystack.mit.edu/geo/mark4/memos/141.pdf

[7] Mark 4 Memo 140: The EVN/Mark 4 Station Unit Requirements
http://www.haystack.mit.edu/geo/mark4/memos/140.pdf 1 March,
1993

[8] MIT Haystack Observatory Mark 5B System User’s Manual 8 August 2006
http://www.haystack.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf

[9] ARWhitney et al.Mark4VLBI correlator: Architecture andalgorithmsRadio Sci-
ence, Vol.39, 27 January 2004

[10] Jonathan Hargreaves, email <4F74966C020000F500004BD1@jive.nl>

[11] Jonathan Hargreaves, email <4F75AACD020000F500004C10@jive.nl>

[12] Jonathan Hargreaves and Harro Verkouter, EVN Correlator Design Version 2.0,
31 March, 2011

8


