M2O Newsletter, No. 29

DDT submitted: to KaVA for a third epoch in May 2022 of G081 since the date of the third epoch of our requested ToO falls outside the range of the proposal active period.

Presentation (and discussion): describing the G358 high-mass protostellar flare and spiral system at Ibaraki University. Also interesting to see how the G358 event influenced many other fields and projects which were introduced by other speakers. We discussed the need for a full survey of 6.7 GHz bearing high-mass protostars imaged in NIR-FIR-mm-6.7GHzVLBI (R. Burns)

OISTER collab: At the Ibaraki conference I met and discussed with Prof. Oasa who introduced the Optical and Infrared Synergetic Telescopes for Education and Research (OISTER) project. It has similarities to the M2O but operates in the IR bands. Their Website is only in Japanese but here is an English article. We discussed possible collaborations and the idea of a full survey mentioned above (R. Burns)

Happy New Year to all! Thanks as always for your continued collaborative efforts. I still feel we've yet to reached max operation efficiency by far, but I have some ideas to improve that. Here's to a great 2022:

1 Activity since the previous Telecom

- SamePage: +0: total 79 members.
- Papers accepted: +0; Total: 19
- Papers in revision:
- Papers in prep:
 - Burns et al., 6.7 GHz VLBI movie in G358. Drafting and further analyses (see Telecom18 Report)
 - Orosz et al., 7.6 and 7.8 GHz methanol masers in G358, aiming for ApJL
 - Hirota et al., G24.33+0.14 ALMA follow-up; pre- and post- flare phases. (see Telecom 20 Report)
 - Kobak et al., VLBI images and SD monitoring of G24.33 during the maser flare(s).
 - Gray et al., Two additions to the maser flare series: compression and skyplane overlap scenarios.
- New observing proposals:

KaVA DDT submitted for a third epoch of G081 in May 2022 (Burns; submitted)

• M2O targets:

Name	Maser	Pre-burst	Max	Current	Reported	Reobserved	Status
	[GHz]	Flux [Jy]	Flux [Jy]	Flux [Jy]	by	by	
G359.617-0.251	6.7	120	200	90	Yonekura	Ib, Hh,	decreasing
Orion S6	6.7	3.1	9	2	Yonekura	Ib, Tr, Sz, Hh	variable
G85.411 + 0.002	6.7	12	95	80	Yonekura	Ib, Ef, Sz, Tr, Hh, Ky, Vs	decreasing
G33.641-0.228	6.7	-	236	60	Bringfried	Hh, Ib, Vs	eruptive
IRAS 16293-2422	22	-	30k	-	Sunada, Mc	Vr, Mc, Hh, Sz, Ib, Mc	-
NGC2071	22	1k	7k	920	Sunada, Hh	Vr, Hh, Sz, Ib	post-burst
G53.22-0.08	22	3	800	30	Sunada	Vr, Hh, Ib	post-burst
G358.93-0.03	6.7	5	1000	15	Yonekura	Hh, Ib	decreasing
G24.33 + 0.14	6.7	-	800	5	Torun	Hh, Ib, Vs, Mc	decreasing
G25.65 + 1.05	22	-	60k	2150	Volvach	Hh, Sz, Mc	post-burst
G034.196-0.592	22	_	120	120	Ladeyschikov	Sz, Oa, Hh, Mc	?
G35.20-0.74	22	600	4k	4k	Volvach	Sz, Hh, Ib	?
G024.541 + 0.312	6.7	~ 5	60	60	Durjasz	Ib, Hh, Vr	Active
G081.174-0.100	22	10	45	45	Ladeyschikov	Ef	Active

 $\begin{array}{l} {\rm (Ib=Ibaraki)\;(Tr=Torun)\;(Sz=Simeiz)\;(Hh=HartRAO)\;(Ef=Effelsberg)\;(Ky=KVN\;Yonsei)\;(Vs=Ventspil)\;(Vr=VERA\;Stations)\;(Mc=Medicina)\;(Ps=Puschino)\;(Oa=OAO-WFC)} \end{array}$

• Active trigger proposals:

Array	Code	Grade	Hours granted	Hours	Active	Resubmit
			target x epoch x hour	remaining	period	deadline
EVN	EB083	1.2 / 5.0 (0 is best)	(3x2x8)x2 bands = 96	96	15/SEP/20 - 15/SEP/21	1/JUN/22 *
KaVA	EAVN21A-213	7.6 / 10.0 (10 is best)	$2 \times 1 \times 8 = 16$	16	16/JAN/21 - 15/JAN/22	$15/\mathrm{NOV}/21~\#$
EAVN	EAVN21A-214	8.3 / 10.0 (10 is best)	$1 \times 2 \times 8 = 16$	16	16/JAN/21 - 15/JAN/22	$15/\mathrm{NOV}/21~\#$
LBA	V581	4.1 / 5.0 (5 is best)	96	88	01/OCT/20 - 01/OCT/21	16/JUN/22 *
VLBA	BB428	0.59 / 10.0 (0 is best)	48	48	01/AUG/21 - 01/AUG/22	$01/\mathrm{FEB}/22$
VLA	VLA/21A-035	[score]	12	12	[dates]	-
SOFIA	90053	[score]	3.46	3.46	[dates]	-
ATCA	C3321	[score]	50	50	[dates]	-
Subaru	S20B0051N	[score]	0.5*2 or 1 night	0.5*2 or 1 night	01/AUG/20 - 01/JAN/21	-
JWST	01906	1st quintile	24.9	24.9	Cycle 1	-

(*/#) New proposals already (submitted/accepted) for the following observing semester

Blue coded proposals have public links (Ctr-F search the page for the code if it is not initially identifiable)

• Follow-up observations conducted (see Record Keeping):

VLA: Trigger observations of G081, C/K bands (PI: O Bayandina et al.)

2 Reports

Short reports on specific activities, please send me an email (ross.burns@nao.ac.jp) in advance if you have something to report in an upcoming telecom.

Next Newsletter / Telecom: 30th Nov 2021, 18:00 JST

Record keeping

M2O Publications

No.	Target	Facility	Author	Frequency (GHz)	Status	Ref	Journal
1	W49N	Sm, Tr	Volvach+	22.2	Published	(1)	MNRAS_L
2	W49N	Sm, Tr, Mc, Ef	Volvach+	22.2	Published	(2)	A&A
3	W49N	Sm, Tr, Mc, Ef, Kvazar	Volvach+	22.2	Published	(3)	Ast.Rep.
4	W49N	Sm	Volvach+	22.2	Published	(4)	MNRAS
5	G25	VLA	Bayandina+	6.7, 12.2, 22	Published	(5)	ApJ
6	G25	$\mathrm{Sim}/\mathrm{Hh}/\mathrm{Tr}$	Volvach+	22	Published	(6)	$MNRAS_L$
7	G25	KVASAR	Volvach+	22	Published	(7)	Ast.Rep.
8	G25	EVN	$\mathrm{Burns} +$	22	Published	(8)	MNRAS
9	G25		${\bf Aberfelds} +$	6.7	in prep		-
10	G25		Bayandina+	12.2, 23.1	in prep		-
11	G25		${\bf MacLeod} +$	6.7, 22	in prep		
12	G358	ATCA	Breen+	mm	Published	(9)	ApJ
13	G358	$\operatorname{ALMA-SMA}$	Brogan +	mm	Published	(10)	ApJL
14	G358	Hh	MacLeod+	New Methanol masers	Published	(11)	MNRAS
15	G358	$_{ m LBA}$	$\operatorname{Burns}+$	6.7	Published	(12)	Nat.Ast.
16	G358	Various VLBI	$\operatorname{Burns}+$	6.7 movie	in prep		-
17	G358	Various VLBI	$\operatorname{Burns}+$	Maps of rare masers	in prep		
18	G358	VLBA	$\operatorname{Burns}+$	6.7 and 12.18	in prep		
19	G358	Asia-Pacific VLBI	${\rm Orosz} +$	7.6, 7.8	in prep.		ApJL
20	G358	VLA	$\operatorname{Chen}+$	multiple lines methanol	Published	(13)	ApJL
21	G358	VLA	$\operatorname{Chen}+$	New lines + Methanol	Published	(14)	Nat. Ast.
22	G358		MacLeod+	6.7 GHz monitoring	in prep		
23	G358		${\bf MacLeod} +$	6.2, 12.2, 20.3, 20.9	in prep		-
24	G358	VLA	Bayandina+	6.7, 12.2, 22.2	Accepted		AJ
25	G358	SOFIA	${\rm Stecklum} +$	FIR	Published	(15)	A&A
_26	G358	Sm and Hh	${\rm Volvach} +$	19.9, 20.9	Published	(16)	MNRASL
27	G24.33	EVN, VLBA	Olech+	6.7, 12.2, 22.2	in prep		-
28	G24.33	${ m Tr}$	$\mathrm{Olech}+$	OH, Meth	in prep		-
29	G24.33	$_{ m Hh}$	v. d. Heever+		in prep		-
30	G24.33	ALMA	$\mathrm{Hirota}+$	Thermal and maser	in prep		-
31	G24.33 + G359	ATCA	${\bf MacCarthy} +$	6.7. 22. Rare transitions	Published	(17)	MNRAS
32	IRAS 16293-2422	Simeiz	Volvach+	Water maser flare	Published	(18)	MNRAS

References

- [1] Volvach, L. N., Volvach, A. E., Larionov, M. G., MacLeod, G. C. & Wolak, P. Unusual flare activity in the extreme-velocity 81 kms1 water-maser feature in W49N. *Monthly Notices of the Royal Astronomical Society: Letters* 487, L77–L80 (2019). URL https://doi.org/10.1093/mnras1/slz088.
- Volvach, L. N. et al. Flaring water masers associated with W49N. A&A 628, A89 (2019).
- [3] Volvach, L. N. et al. An unusually powerful water-maser flare in the galactic source w49n. Astronomy Reports 63, 652–665 (2019). URL https://doi.org/10.1134/S1063772919080067.
- [4] Volvach, A. E., Volvach, L. N. & Larionov, M. G. Unusually powerful flare activity of the H₂O maser feature near a velocity of -60 km s⁻¹ in W49N. MNRAS 496, L147–L151 (2020).
- [5] Bayandina, O. S., Burns, R. A., Kurtz, S. E., Shakhvorostova, N. N. & Val'tts, I. E. JVLA overview of the bursting H\$ 2\$O maser source G25.65+1.05. arXiv e-prints arXiv:1812.11353 (2018).
- [6] Volvach, L. N. et al. Powerful bursts of water masers towards G25.65+1.05. MNRAS 482, L90-L92 (2019).
- [7] Vol'vach, L. N. et al. A Giant Water Maser Flare in the Galactic Source IRAS 18316-0602. Astronomy Reports 63, 49-65 (2019).
- [8] Burns, R. A. et al. VLBI observations of the G25.65+1.05 water maser superburst. MNRAS **491**, 4069–4075 (2020).
- [9] Breen, S. L. et al. Discovery of Six New Class II Methanol Maser Transitions, Including the Unambiguous Detection of Three Torsionally Excited Lines toward G 358.9310.030. ApJ 876, L25 (2019).
- [10] Brogan, C. L. et al. Sub-arcsecond (Sub)millimeter Imaging of the Massive Protocluster G358.93-0.03: Discovery of 14 New Methanol Maser Lines Associated with a Hot Core. ApJL 881, L39 (2019).
- [11] MacLeod, G. C. et al. Detection of new methanol maser transitions associated with G358.93-0.03. MNRAS 489, 3981–3989 (2019).
- [12] Burns, R. A. et al. A heatwave of accretion energy traced by masers in the G358-MM1 high-mass protostar. Nature Astronomy 10 (2020). URL https://ui.adsabs.harvard.edu/abs/2020NatAs.tmp...10B.
- [13] Chen, X. et al. \(^13\)CH\(^3\)OH Masers Associated With a Transient Phenomenon in a High-mass Young Stellar Object. ApJL 890, L22 (2020). URL https://ui.adsabs.harvard.edu/abs/2020ApJ...890L..22C.
- [14] Chen, X. et al. New maser species tracing spiral-arm accretion flows in a high-mass young stellar object. Nature Astronomy (2020). URL https://ui.adsabs.harvard.edu/abs/2020NatAs.tmp..144C.
- [15] Stecklum, B. et al. Infrared observations of the flaring maser source G358.93-0.03. SOFIA confirms an accretion burst from a massive young stellar object. A&A 646, A161 (2021).
- [16] Volvach, A. E. et al. Monitoring a methanol maser flare associated with the massive star-forming region G358.93-0.03. MNRAS 494, L59–L63 (2020).
- [17] McCarthy, T. P. et al. Molecular line search towards the flaring 6.7-GHz methanol masers of G 24.33+0.13 and G 359.62-0.24: rare maser transitions detected. MNRAS 509, 1681-1689 (2022).
- [18] Volvach, A. E., Volvach, L. N. & Larionov, M. G. Composite powerful short flare of water maser emission in IRAS 16293-2422. MNRAS 507, L52-L56 (2021).

M2O follow-up data

_,	120 1011011 6	ip aata				
No.	Target	Facility	Date	Frequency (GHz)	Code	PI/comment
1	G25	VLA	Oct 2017	6.7, 12.2, 22	17B-408	OB / Reduced
2	$\mathrm{G25}\mathrm{+W49N}$	EVN	Oct 2017	22	RB004	RB / Reduced
3	$\mathrm{G25}\mathrm{+W49N}$	KaVA	Oct 2017	22	K17RB01A	RB / Reduced
4	$\mathrm{G25}\mathrm{+W49N}$	VLBA	Oct 2017	$\frac{-}{22}$	BO058	GO / Reduced
5	G25	VERA	2007-2013	22, 16 x epochs	[archival]	K. Motogi / On hold
	G358	VERA	31 Jan 2019	6.7	[arciiivai]	
6					-	SY / Reduced
7	G358	VERA	3 Mar 2019	6.7	-	SY / Reduced
8	G358	VERA	1 Apr 2019	6.7	-	SY / Reduced
9	G358	VERA	3 May 2019	6.7	-	SY / Reduced
10	G358	LBA	2 Feb 2019	6.7	vc026a	RB / Published
11	G358	LBA	3 Feb 2019	23.1	vc026b	GO / Abandoned
12	G358	LBA	28 Feb 2019	6.7	vc026c	RB / Published
13	G358	EVN	13 Mar 2019	$6.7, \underline{6.18}$	RB005	RB / Reduced
14	G358	KVN	25 Mar 2019	22, 44, 95, 120	n19rb01a	RB / Reduced
15	G358	VLBA	19 May 2019	6.7, 12.2, 23.1	BB414	RB / Reduced
16	G358	VLBA	7 Jun 2019	6.7, 12.2, 20.7	BB412	RB / Reduced
17	G358	${ m LBA+E.Asia}$	17 May 2019	7.6, 7.8	vx028a	GO,SE / Reduced
18	G358	LBA+AusSCOPE	28 Sep 2019	6.7	v581a	$\mathrm{RB}\ /\ \mathrm{Reduced}$
19	G358	LBA+AusSCOPE	18 Aug 2020	6.7	v581b	RB / Reduced
20	G358	SOFIA	30 April 2019	$50120 \ \mu m$		BS,JE / Published
21	G358	GROND	$8~{\rm Feb}~2019$	NIR		HL,BS,AC / Published
22	G358	SMA	several 2019	mm		THunter, CB / Published
23	G358	ALMA	several 2019	Bands 5,6,7		CB / Published
24	G358	VLA	2019	C, Ku bands	-	OB
25	G358	VLA	2019	K band	-	OB
26	G358	VLA	2019	HNCO	-	XC,AS
27	G24	LBA	8 Sep 2019	6.7	vx026d	RB,MO / Correlated
28	G24	LBA	13 Sep 2019	6.7	s002a	RB,MO / Correlated
29	G24	LBA	28 Sep 2019	6.7	v581a	RB,MO / Correlated
30	G24	EVN	22 Sep 2019	22	RB006A	RB,MO / QuickLook
31	G24	EVN+Merlin	7 Oct 2019	6.7	RB006B	RB,MO / QuickLook
32	G24	EVN+Merlin	17 Nov 2019	1.667	RB007	RB,MO / correlated
33	G24	VLBA	27 Sep 2019	6.7, 12.2, 22	BB416A	RB,MO / QuickLook
34	G24	VLBA	27 Oct 2019	6.7, 12.2, 22	BB416B	RB,MO / correlated
35	G24	VLBA	02 Dec 2019	6.7, 12.2, 22	BB416C	RB,MO / correlated
36	G24	ALMA	26 Sep 2019	Band6	-	THirota / Reduced
37	G24	SOFIA	25 Oct 2019	FIR	_	BS,JE
38	G24	ATCA	26 Nov 2019	K-band	C3321	GO,SB
39	G24	ATCA	27 Nov 2019	C-band	C3321	GO,SB
40	NGC2071, Ori-S6	KaVA	13 Mar 2020	22/44/95/130	a20d3a	RB / QuickLook
41	NGC2071, Ori-S6	KaVA	16 Apr 2020	22/44/95/130	a20d3b	RB / QuickLook
42	NGC2071, Ori-S6	KaVA	11 May 2020	22/44/95/130	a20d3c	RB / Quick Look
43	G85.411 + 0.002	VLBA	$24/\mathrm{Apr}/2020$	L/C/Ku/K	BB421B	RB / QuickLook
44	G85.411 + 0.002	VLBA	$22/\mathrm{May}/2020$	L/C/Ku/K	BB421A	RB / QuickLook
45	G85.411 + 0.002	VLBA	$22/\mathrm{June}/2020$	L/C/Ku/K	BB421C	RB / Quick Look
46	G359.617-0.251	LBA	18/Aug/2020	6.7	V581B	RB / Quick Look
47	G359.617-0.251	VLBA	$21/\mathrm{Aug}/2020$	$6.7\ /\ 12.2\ /\ 22$	BB418A	RB / Quick Look
48	G359.617-0.251	ATCA	25-26/July/2020	6-10 GHz	C3321	GO'/ Submitted
49	G034.196-0.592	VLA	19/NOV/2020	С	VLA/20B-441	DL / Calibrated
50	G034.196-0.592	VLA	29/NOV/2020	K	VLA/20B-441 VLA/20B-441	DL / Calibrated
51	G034.196-0.592	KaVA	12/DEC/2020	K(QWD)	a20d4a	RB / Quick Look
51	G034.196-0.592	KaVA	23/JAN/2021	K(QWD)	a21d1a	RB / Quick Look
52	G034.196-0.592	KaVA	18/FEB/2021	K(QWD)	a21d1a a21d1b	RB / Quick Look
54				· · · · · · · · · · · · · · · · · · ·		
	G35.200.74	KaVA	23/JAN/2021	K(QWD)	a21d1a	RB / Quick Look
55	G35.200.74	KaVA	18/FEB/2021	K(QWD)	a21d1b	RB / Quick Look
56	S255 and G188	EVN	3/NOV/2021	С	EB087	RB / Correlating
57	G024.541 + 0.312	VLBA	16/NOV/2021	C/Ku/K	BB428A	RB / Correlating
	G081.174-0.100	EAVN	9/DEC/2021	K	a21d2a	RB / observed
59	G081.174-0.100	VLA	19/DEC/2021	C/K	-	OB / processing
	3002.111 0.100	A 1717	10/ 2021	~/ ···		OD / Processing

Reminders:

Please consult the original reporters of flare events on how they request their input to be acknowledged in follow-up proposals and publications.

All G25.65+0.15 papers should include a member from the <u>Volvach et al.</u> group in the author list and an acknowledgement of their funding.

All G358 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G24.33 papers should include a member from the <u>Torun</u> team in the author list and an acknowledgement of their funding.

All Orion-S6 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All NGC2071 papers should include a member from the $\underline{\text{VERA} / \text{Sunada}}$ team in the author list and an acknowledgement of their funding.

All G53.22-0.08 papers should include a member from the $\underline{\text{VERA} / \text{Sunada}}$ team in the author list and an acknowledgement of their funding.

All G85 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G359 papers should include a member from the <u>Ibaraki</u> team in the author list and an acknowledgement of their funding.

All G034.196-0.592 papers should include a member from the $\underline{\text{Ladeyschikov et al.}}$ group in the author list and an acknowledgement of their funding.

All G35.200.74 papers should include a member from the <u>Volvach et al.</u> group in the author list and an acknowledgement of their funding.

All 024.541+0.312 papers should include a member from the <u>Torun</u> team in the author list and an acknowledgement of their funding.

All G081.174-0.100 papers should include a member from the <u>Ladeyschikov et al.</u> team in the author list and an acknowledgement of their funding.